WELCOME TO ALL MY PRESENTATION

d

O

Ó

Ċ

Ó

AN INTRODUCTION TO MICROCONTROLLERS

n

Q

b°

 \bigcirc

 \bigcirc

What Is A Microcontroller? A microcontroller is an integrated circuit that is programmed to do a

specific task.

• Microcontrollers are really just "mini-computers".

Where do you find them?

 Microcontrollers are hidden in tons of appliances, gadgets, and other electronics.

6

• They're everywhere!

History of Microcontrollers

6

Ċ

Microprocessor –vs- Microcontroller

 You may have heard of the term "microprocessor" or just "processor" before. You may ask, "Is there a difference between a microprocessor and microcontroller?"

•Yes there is, they are two different things!

		MICROPROCESSOR	MICROCONTROLLER	
Applicatio	ons	General Computing (I.E. Laptops, Tablets)	Appliances, Specialized Devices	
Speed		Very Fast	Relatively Slow	
External Parts		Many	Few	
Cost		High	Low	
Energy Use		Medium To	Very Low To $_{ m o}$	
Vendors		High (intel) AMD ZI ARM		

Basic Principles of Operation

6

Microcontrollers are used for specific applications.

- They do not need to be powerful because most applications only require a clock of a few MHz and small amount of storage.
- A microcontroller needs to be programmed to be useful.

• A microcontroller is only as useful as the code written for it. If you wanted to turn on a red light when a temperature reached a certain point, the programmer would have to explicitly specify how that will happen through his code.

^b Microcontroller Programming

1.) Code is written for the microcontroller in an integrated development environment, a PC program. The code is written in a programming language. (e.g. C, BASIC or Assembly).

2.) The IDE debugs the code for errors, and then compiles it into binary code which the microcontroller can execute.

3.) A programmer (a piece of hardware, not a person) is used to transfer the code from the PC to the microcontroller. The most common type of programmer is an ICSP (In-circuit serial programmer).

Q

The Analog to Digital Converter (ADC)

• Just about every modern microcontroller contains an ADC(s).

• It converts analog voltages into digital values.

• These digital representations of the signal at hand can be analyzed in code, logged in memory, or used in practically ρ any other way possible.

The Digital to Analog Converter (DAC) • You guessed it! Microcontrollers have accompanying DACs.

• It does exactly the opposite function of an ADC. It takes a digital value and converts it into an pseudo-analog voltage.

• It can be used to do an enormous amount of things. One example is to synthesize a waveform. We can create an paudio signal from a microcontroller. Imagine that!

 \bigcirc

^b Microcontroller Applications

•This is the controller board for a washing machine. If a button is pushed or if a knob is turned, the microcontroller knows how to react to the event.

• Ex. If "start" is pushed, the microcontroller knows to switch a relay which starts the motor.

^b Microcontroller Applications

•This is the main controller from a Buick Regal. This board has several microcontrollers each for a specific task.

 Ex. A microcontroller may handle dashboard controls or it may even control something more complex like the ignition system.

^bMicrocontroller Applications

•Many robots use microcontrollers to allow robots to interact with the real world.

• Ex. If a proximity sensor senses an object near by, the microcontroller will know to stop its motors and then find an unobstructed path.

Q

Microcontroller Packaging

ST ZE GH CH

DIP (Dual Inline Package) Through hole 8 pins 9mm x 6mm 0,15pins/mm²

 \diamond

SOIC (Small Outline IC) Surface Mount 18 pins 11mm x 7mm 0.23pins/mm²

QFP (Quad Flat Package) Surface Mount 32 pins 7mm x 7mm 0.65pins/mm² BGA (Ball Grid Array) Surface Mount 100 pins 6mm x 6mm 2.78pins/mm²

How can I get started?

b If you want to develop for microcontrollers, you can purchase a development board which includes a microcontroller and all of the necessary parts to get it working. (i.e. power supply and a **OUSB** interface)

MICROCONTROLLER PIN DIAGRAM

ρ

 \mathcal{O}

 \bigcap

Q

Ċ

 \mathcal{O}

Microcontroller Basic Hardware Designing

Basics of Hardware Programming

q

Introduction to MIKRO C Pro for PIC

Embedded Systems

Has Two Parts:

O

Ć

Ο

- Hardware
- Software
 - Low Level Language
 - High Level Language

Assembly Language Vs C Language

Program Written in C language

int num_a = 34; int num_b = 14; int result; void main() { result = num a

6

 \cap

 \square

	; ADDRE	SS			
	\$0000	MOVLW	128		
	GOTO m	\$000A	SUUES		
	\$005D	Ma	\$001E	\$1C03	
num b;	\$005D	\$000B	BTFSS	dayante to	-
	MOVLW	CL	\$001F	\$0033	\$0CF9
	\$005E	\$000C	GOTO \$+13	RRF STACE	(9, F
	BCF ST	BI	\$0020	\$0034	\$0CF8
	\$005F	\$000D	MOVE STAC	RRF STACK	(8, F
	BCF ST	GÓ	\$0021	\$0035	\$1C03
	\$0060	\$000E	ADDWF	BTFSS	STATUS, C
	MOVWF	CO	\$0022	\$0036	\$281C
	\$0061	\$000F	MOVE STAC	GOTO \$-26	
-	MOVLW	CO	\$0023	\$0037	\$1C7D
	\$0062	\$0010	BTFSC	BTFSS	STACK 13,
	MOVWF	IN	\$0024	\$0038	\$2844
	\$0063	\$0011	INCESZ	GOTO \$+12	
	MOVLW	BI	\$0025	\$0039	\$09FB
	\$0064	\$0012	ADDWF	COMF STACE	(11, F
	MOVWF	IN	\$0026	\$003A	\$09FA
	\$0065	\$0013	BTFSC	COMF STACK	(10, F
	MOVLW	IN	\$0027	\$003B	\$09F9
	\$0066	\$0014	INCE STAC	COMF STACE	(9, F
	MOVWF	BI	\$0028	\$003C	\$09F8
	\$0067	\$0015	BCF STAT	COMF STACK	(8, F
	RETURN	GO	\$0029	\$003D	\$0AF8
	\$0004	\$0016	BTFSS	INCE STACK	(8, F
	\$0004	00	\$002A	\$003E	\$1903
	BCF ST	\$0017	GOTO \$+7	BTFSC	STATUS, 2
	\$0005	CC	\$002B	\$003F	\$0AF9
	BCF ST	\$0018	MOVE STAC	INCE STACE	(9, F
	\$0006	IN	\$002C	\$0040	\$1903
		\$0019	ADDWF	BTFSC	STATUS, Z
		BI	\$002D	\$0041	SOAFA
			BTFSC	INCE STACK	(10, F
		-	\$002E	\$0042	\$1903
				BTFSC	STATUS, Z
			-	\$0043	SOAFB

Same program compiled into assembly code

0

Example for C Language

PORTD = 0x00;while(1)

void main ()

Q

// load 00000000 to portb TRISD = 0x00; // load 00000000 to trisb to make portb as output port // infinity loop

> PORTD = 0B11111111; $delay_ms(500);$ PORTD = 0B0000000; delay_ms(500);

// load 0000001 to portb // wait 500ms // load 0000010 to portb // wait 500ms

DATA TYPES

79	DATA TYPE	DESCRIPTION	SIZE (NUMBER OF BITS)	RANGE OF VALUES
	char	Character	8	0 to 255
	int	Integer	16	-32768 to 32767
	float	Floating point	32	from ±1.17549435082 x10 ⁻³⁸ to ±6.80564774407 x10 ³⁸
19	double	Double precision floating point	32	from ±1.17549435082 x10 ⁻³⁸ to ±6.80564774407 x10 ³⁸

O

С

С

Data Types Cont...

О

Ó

 \cap

Ó

DATA TYPE	Data Type With Prefix	SIZE (NUMBER OF BITS)	RANGE	
char	signed char	8	-128 to 128	
	unsigned int	16	0 to 65535	
	short int	8	0 to 255	
int	signed short int	8	-128 to 127	
	long int	32	0 to 4294967295	
	signed long int	32	-2147483648 to 2147483647	

Declaring Variable

- Variable name can include any of the alphabetical characters A-Z (a-z), the digits 0-9 and the underscore character '_'.
- Variable names must not start with a digit.
- Some of the names cannot be used as variable names as already being used by the compiler itself.

Example:

Ċ

unsigned int gate1; signed int start, sum; gate1 = 20;

Ó

 \cap

 \cap

OPERATOR	OPERATION
+	Addition
-	Subtraction
*	Multiplication
/	Division
%	Reminder

ASSIGNMENT OPERATORS

O

Ò

 \cap

 \bigcirc

	EXAMPLE			
OPERATOR	Expression	Equivalent		
+=	a += 8	a = a + 8		
-=	a -= 8	a = a - 8		
*=	a *= 8	a = a * 8		
/=	a/= 8	a = a / 8		
%=	a %= 8	a = a %8		
	++a	Variable "a"		
++	a++	is incremented by 1		
	b	Variable "b" is		
	b	decremented by 1		

RELATIONAL OPERATORS

0

O

6 N

 \bigcirc

 \bigcirc

С

OPERATOR	MEANING	EXAMPLE	TRUTH CONDITION
>	isgreaterthan	b > a	if b isgreater than a
>=	is greater than or equal to	a >= 5	If a isgreater than or equal to 5
<	islessthan	a < b	if a Islessthanb
<=	is less than or equal to	a <= b	if a Islessthan or equal to b
==	isequalto	a == 6	if a lsequal to 6
!=	is not equal to	a != b	if a Isnot equal to b

0

LOGICAL OPERATOR

OPERATOR	LOGICAL AND (&&)		OPERATOR	LOGICAL OR			
	Opera nd 1	Operand2	Result		Operand1	Operand2	Result
&&	0	0	0		0	0	0
	0	1	0		0	1	1
	1	0	0		1	0	1
	1	1	1		1	1	1

OPERATOR	LOGICAL NOT		
	Operand1	Result	
!	0	1	
	1	0	

 \mathcal{O}

6

 \square

9 D

 \frown

 \square

BASIC PIN CONFIGURATION

- TRISB= 0 For Output & 1 For Input
- PORTB= 0x00 / 0b0000000 sets all the bits in the port to 0
- PORTB.F1= 1; Sets the port B1 to 1;


```
void main() {
TRISB = 0b0000000;
PORTB= 0b0000000;
while(1){
        PORTB.F0 = 1;
        delay_ms(2000);
        PORTB.F0= 0;
        PORTB.F1 = 1;
        delay_ms(2000);
        PORTB.F1= 0;
        PORTB.F2= 1;
        delay_ms(2000);
        PORTB.F2=0;
        PORTB.F3 = 1;
        delay_ms(2000);
        PORTB.F3 = 0;
```

()

Ò

Ċ

Q

INTRODUCTION TO HARDWARE PROGRAMMING II

ARRAY, CONDITIONAL STATEMENTAND LOOPS

n

Q

ြိ

 \cap

- A group of variables of the same type is called an array
- Example: short int led[5];

int a;

Ċ

Q

С

$$led[] = (5, 4, 6, 2, 7, 9);$$

- a = led[3];
- •Two Dimensional Array
- char super[3][2];

array_type array_name [rows][columns];

CONDITIONAL STATEMENT-IF & IF-ELSE CONT'D

If (PORTD.F1==0){

O

else {

Q

PORTB= 0b11111111; $delay_ms(500);$ PORTB= 0b0000000; delay_ms(500); PORTB=0b00001111; delay_ms(500); PORTB= 0b11110000; delay_ms(500);

CONDITIONAL STATEMENT- SWITCH temp=0 while(1) switch (temp){ 9 PORTB= 0b11110000; case4: temp=0

case1:{PORTB = 0b11111111; delay_ms(500); 0b0000000);} case2:PORTB = case3: {delay_ms(500); PORTB= 0b00001111;}

While(expression){

.

.

int a = 1; while (a < 4)
{
 printf ("Hello World\n");
 a ++;
}</pre>

Output

codesdope.com

O

Ò

Q

Q

С

FOR LOOP

for(initial_expression; condition_expression; change_expression) { operations

• Example

Ó

for(k=1; k<5; k++) { //Increase variable k 5 times (from 1 to 5) and operation // repeat expression operation every time

...

DO - WHILE LOOP

do{

О

Ò

Ċ

Q

operation

}while (check_condition);

Example:

a = 0; // Set initial value do{
 a = a+1; // Operation in progress
 PORTD.F0 = 1;
 delay_ms(500); PORTD.F0=0;
 delay_ms(500);
}while (a <= 25); // Check condition</pre>

000	ò	
20		

Decimal	Binary	Hexadecimal		
(Base 10)	(Base 2)	(Base 16)		
0	0000	0		
1	0001	1		
2	0010	2		
3	0011	3		
4	0100	4		
5	0101	5		
6	0110	6		
7	0111	7		
8	1000	8		
9	1001	9		
10	1010	А		
11	1011	В		
12	1100	С		
13	1101	D		
14	1110	E		
15	1111	F		

7 SEGMENT DISPLAY

INTERFACING WITH PIC MICROCONTROLLER

 \mathcal{O}

Q

9

Q

S

С

Ċ

 \cap

 \bigcirc

SEVEN SEGMENT DISPLAY

- A seven-segment display is a set of seven bar-shaped LED
- Arranged to form a squared-off figure 8
- Seven segment displays can only display 0 to 9 numbers , decimal "." and some letters.

TYPES OF SEVEN SEGMENT DISPLAY

Q

- Two types of seven-segment
 Display
 - Common anode

- In a common anode sevensegment LED
 - All anodes are connected together to a power supply and cathodes are connected to data lines
- Logic 0 turns on a segment.
- Example: To display digit 1, all segments except b and c should be off.
- Byte 11111001 = F9H will display digit 1.

Ó

- In a common cathode sevensegment LED
 - All cathodes are connected together to ground and the anodes are connected to data lines
- Logic 1 turns on a segment.
- Example: To display digit 1, all segments except b and c should be off.
- Byte 00000110 = 06H will display digit 1.

0

 \bigcirc

σ

7-SEGMENT DISPLAY INTERFACING WITH PIC MICROCONTROLLER

Segment	Port Connection
A	RBO
В	RB1
С	RB2
D	RB3
E	RB4
F	RB5
G	RB6
DP	RB7

n

 \square

 \frown

 \bigcirc

EXAMPLE CODE FOR SINGLE 7 SEGMENT

COMMON CATHODE

n

Ċ

 \bigcirc

void main() { trisb=0x00; while(1) portb=0b00111111; delay ms(500); portb=0b00000110; delay ms(500); portb=0b01011011; delay ms(500); portb=0b01001111; delay ms(500); portb=0b01100110; delay_ms(500); portb=0b01101101; delay ms(500); portb=0b01111101; delay_ms(500); portb=0b00000111; delay ms(500); portb=0b11111111; delay ms(500); portb=0b01101111; delay ms(500);

^b EXAMPLE CODE FOR SINGLE 7 SEGMENT

```
]int main() {
    char seg code[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};
    int i;
    /* Configure the ports as output */
    TRISB = 0 \times 00;
    while (1)
        for (i = 0; i <= 9; i++) // loop to display 0-9
             PORTB = seg code[i];
             delay ms(100);
```

MULTIPLEXING WITH 7 SEGMENT

 \mathcal{O}

 \mathbf{C}

 \square

Ò

Ċ

Ò

С

^b EXAMPLE OF MULTIPLEXING CODING

int main() {

int cnt, num, temp,i;

/* Configure the ports as output */
TRISE = 0x00; // Data lines
TRISD = 0x00; // Control signal PORTD0-PORTD3

while (1)

for (cnt = 0x00; cnt <= 9999; cnt++) // loop to display 0-9999 {
 for (i = 0; i < 100; i++)
 {
 num = cnt;
 temp = num / 1000;
 num = num % 1000;
 PORID = SegOne;
 PORIB = seg code[temp];
 }
}</pre>

temp = num / 100; num = num % 100; PORTD = SegTwo; PORTB = seg_code[temp]; DELAY_ms(1);

DELAY ms(1);

temp = num / 10; PORTD = SegThree; PORTB = seg_code[temp]; DELAY ms(1);

temp = num % 10; PORTD = SegFour; PORTB = seg_code[temp]; DELAY ms(1);

Q

 \cap

LCD INTERFACING WITH PIC MCU

16X2 LCD, 20X4 LCD

0

Q

9

Q

S

Ç

 \bigcirc

 \bigcirc

 \cap

INTERFACING

 \square

Ċ

Q

- Can Use 4 bit or 8 bit
- 8 bit slightly faster
- Use 4 bit becaus not much faster and saves IO pins

6					
	Function	Pin Number	Name	Logic State	Description
	Ground	1	Vss	-	0V
b PIN CONFIG	Power supply	2	Vdd	-	+5V
)	Contrast	3	Vee	-	0V to +5V
	Control of operation	4	RS	0	D0-D7 are interpreted as commands
				1	D0-D7 are interpreted as data
		5	R/W	0	Write data (from microcontroller to LCD)
				1	Read data (from LCD to microcontroller)
		6	E	0	Access to LCD disabled
				1	Normal operation
				From 1 to 0	data/ commands are sent to LCD
NDD VS 0400400 NDD VS 0400400 NDD VS 0400400 NDD VS 0400400 NDD VS 0400400 NDD VS 0400400 ND VS 04000 ND VS		7	D0	0/1	Bit 0 LSB
		8	D1	0/1	Bit 1
		9	D2	0/1	Bit 2
		10	D3	0/1	Bit 3
		11	D4	0/1	Bit 4
ρ		12	D5	0/1	Bit 5
		12	D6	0/1	Bit 6
Ϋ́Υ		14	D7	0/1	Bit 7 MSB

ρ

O

 \cap

Ó

 \bigcirc

DEFINING LCD CONNECTIONS

// LCD module connections sbit LCD_RS at RC2_bit; sbit LCD_EN at RC3_bit; sbit LCD D4 at RC4 bit; sbit LCD_D5 at RC5_bit; sbit LCD D6 at RC6 bit; sbit LCD D7 at RC7 bit; sbit LCD RS Direction at TRISC2 bit; sbit LCD EN Direction at TRISC3 bit; sbit LCD D4 Direction at TRISC4 bit; sbit LCD D5 Direction at TRISC5 bit; sbit LCD D6 Direction at TRISC6 bit; sbit LCD D7 Direction at TRISC7 bit; // End LCD module connections

ρ

Q

LIBRARY FUNCTIONS

Lcd_Init

Prototype : void Lcd_Init();

This function initializes the LCD module connected to the above defined pins of the PIC Microcontroller.

• Lcd_Out

Prototype : *void Lcd_Out(char row, char column, char *text);* This functions prints the text (string) in a particular row and column.

Lcd_Out_Cp

Prototype : void Lcd_Out_Cp(char *text);

This function prints the text (string) in the current cursor position. When we write data to LCD Screen, it automatically increments the cursor position.

• Lcd_Chr

Prototype : *void Lcd_Chr(char row, char column, char out_char);* It prints the character (out_char) in the specified row and column of the LCD Screen.

• Lcd_Chr_Cp

Prototype : *void Lcd_Chr_Cp(char out_char);* It prints the character (out_char) in the current cursor position.

LIBRARY FUNCTIONS CONT'D

Lcd_Cmd

Ċ

Prototype : void Lcd_Cmd(char out_char);

This function is used to send commands to LCD. You can use any one of the following constants as command.

- _LCD_TURN_ON Turns ON the LCD Display.
- _LCD_TURN_OFF Turns OFF the LCD Display.
- _LCD_FIRST_ROW Moves the cursor to the first row.
- _LCD_SECOND_ROW Moves the cursor to the the second row.
- _LCD_THIRD_ROW Moves the cursor to the third row.
- _LCD_FOURTH_ROW Moves the cursor to the fourth row.
- _LCD_CLEAR Clears the LCD Display.
- _LCD_CURSOR_OFF Turns ON the cursor.
- _LCD_UNDERLINE_ON Turns ON the cursor underline.
- _LCD_BLINK_CURSOR_ON Turns ON the cursor blink.
- _LCD_MOVE_CURSOR_LEFT Moves cursor LEFT without changing the data.
- _LCD_MOVE_CURSOR_RIGHT Moves cursor RIGHT without changing the data.
- _LCD_SHIFT_LEFT Shifts the display left without changing the data in the display RAM.
- LCD SHIFT RIGHT Shifts the display right without changing the data in the

ρ

ANALOG TO DIGITAL CONVERTER

ELECTRONIC VOLTMETER WITH PIC16F877A

Q

Analog to Digital Converter(ADC)

Ó

Ċ

- Just about every modern microcontroller contains an ADC(s).
- It converts analog voltages into digital values.

• These digital representations of the signal at hand can be analyzed in code, logged in memory, or used in practically any other way possible.

The Analog to Digital Converter (ADC)

PTC Specifications:

100Ω @ 25°C + 1Ω/ 1°C

(ex. @ 26°C, R = 101Ω 24°C, R = 99Ω

code

Ċ

Q

Void Loop()

```
voltage25C = 512
voltageADC = ADC.input(pin1)
```

```
ratio = voltageADC / voltage25C
temperature = ratio * 25
```

A 10-bit ADC will represent a voltage between 0 to 5 as a number between 0 to 1024.

PTC

CALCULATION

Q

Vout = (R2 / R1+R2) * Vinput Vout = (2 / 18+2) * 40 = 4 volt

- ADC module of pic microcontroller converts analog signal into binary numbers. PIC16F877A microcontroller have 10 bit ADC.
- PIC16F877A microcontroller have 10-bit ADC and it counts binary from 0-1023 for every minimum analog value of input signal.

```
Explanation of Code
while (1)
voltage = ADC_Read(0);
voltage = (voltage * 5 * 10)/ (1024);
inttostr(voltage,volt); // it converts integer value into string
Lcd_Out(2,1,"Voltage = ");
Lcd_Out(2,11,Ltrim(volt));
Lcd_Out(2,13,"Volt");
```

9

Thanks! ANY QUESTIONS

О

