Subject Name: Java Programming
Subject Code:28541
Computer Science & Technology-4t" Semester

53:3:3:3:3.‘-‘53fffWGb':3a:p:p'|3lca-t|0n:-'3:3

5:;1;:;:;:95:;:;:;An;d;:mruchi,-r;mu.c:h:;m.or.e:!:;:;:;:;:;:;r;:;:;r;:;:;:;:;:;:;:;i;:;r;:;:;:;:;:;:;r;:;:;:;r;r;:;:;:;:;:;r;:;:;:;:;r;r;:;:;:;:

..

..

public static void main(String[] args){

System.out.prmtln("HeIIo World!");
B System.out.printIn("l am learning Java.");
Bl System.out.printIn("It is awesome!");

System.out.prmtln(B),
[System.out.printIn(358);
Bl System.out.printin(50000);

B String name = "John";
B System.out.printin(name);

8 int myNum; 8
B myNum = 15; 8 String name = "John"; 5
System.out.printin(myNum); System.out.printin("Hello " + name); &

~andithas no-additional methods.
- There are eight primitive data typesinJava: oo
Data Type Size Description
byte 1 byte Stores whole numbers from -128 to 127
short 2 bytes Stores whole numbers from -32,768 to 32,767
S int 4 bytes Stores whole numbers from -2,147,483,648 to 2,147,483,647
long 8 bytes Stores whole numbers from -9,223,372,036,854,775,808 to
' 9,223,372,036,854,775,807
float 4 bytes Stores fractional numbers. Sufficient for storing 6 to 7 decimal
digits
double 8 bytes Stores fractional numbers. Sufficient for storing 15 decimal digits
boolean 1 bit Stores true or false values

char 2 bytes Stores a single character/letter or ASCII values

Integer types stores whole numbers, positive or negative (such =
as 123 or -456), without decimals. Valid types
~are byte, short, int and long. Which type you should use,

- depends on the numeric value. B
- Floating point types represents numbers with a fractional part, =
~containing one or more decimals. There are
types: float and double.

byte myNum = 100; System.out.printin(myNum);

| short myNum = 5000; System.out.printin(myNum);
int myNum = 100000; System.out.printIn(myNum);

| long myNum = 15000000000L;

| System.out.printin(myNum);

| float myNum = 5.75f; System.out.printin(myNum);

| double myNum = 19.99d; System.out.println(myNum);

Java Operators

Operators are used to perform operations on variables and values.

In the example below, we use the + operator to add together two
values:

int sum1 =100 + 50; // 150 (100 + 50)

int sum2 =sum1 + 250; // 400 (150 + 250)
int sum3 =sum2 + sum2; // 800 (400 + 400)

...

- Arithmetic Operators
- Arithmetic operators are used to perform common mathematical
- operations.

Operator Name Description Example
+ Addition Adds together two values X+Yy
- Subtraction Subtracts one value from another X-y
* Multiplication Multiplies two values X *y
/ Division Divides one value by another X/y
% Modulus Returns the division remainder X%y
++ Increment Increases the value of a variable by 1 ++X

-~ Decrement Decreases the value of a variable by 1 --X

~ Assignment Operators
-~ Assignment operators are used to assign values to variables.
- assignment operator (=) to assign the value 10 to a variable called x:

>>= X >>=3 X=X>>3

<<= X <<= 3 X=X<<3

- Comparison Operators
Comparison operators are used to compare two values (or variables).

fintx=5;inty=3;
System.out.printIn(x > y); // returns true, because 5 is higher than 3

== Equal to X==Y
|= Not equal Xl=y
> Greater than X >y
< Less than X<y
>= Greater than or equal to X>=y

<= Less than or equal to X<=Yy

Logical Operators
You can also test for true or false values with logical operators.
Logical operators are used to determine the logic between variables or -

values:

Operator Name Description Example
&& Logical Returns true if both statements are Xx<5&& x<10
and true o
| | Logical Returns true if one of the statements is X<5]||x<4
or true
! Logical Reverse the result, returns false if the I(x <5 && x <

not result is true 10)

Strings

String greeting = "Hello";
§ String txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
§ System.out.printin("The length of the txt string is: " + txt.length());

if (condition) {
// block of code to be executed if the condition is true

J
if (20 > 18) {

System.out.println("20 is greater than 18");
}

else Statement

Use the else statement to specify a block of code to be executed if the
condition is false.

Syntax:
if (condition) { // block of code to be executed if the condition is true }
else { // block of code to be executed if the condition is false }

Example:

int time = 20;

if (time < 18) {
System.out.printin("Good day."); }
else {

System.out.printin("Good evening."); } // Outputs "Good evening."

else if Statement
Use the else if statement to specify a new condition if the first

condition is false.

Example:
int time = 22;

if (time < 10) {

System.out.printIn("Good morning."); }

else if (time < 18) {

System.out.printin("Good day."); }

else {

System.out.printIn("Good evening."); } // Outputs "Good
evening."

Switch Statements

Instead of writing many if..else statements, you can use
the switch statement.

Example:
int day = 4;

switch (day) {

case 1: System.out.printin("Monday");
break;

case 2: System.out.printIn("Tuesday");
break;

case 3: System.out.printIn("Wednesday");
break;

case 4: System.out.printIn("Thursday");
break;

case 5: System.out.printIn("Friday");
break;

case 6: System.out.printin("Saturday");
break;

case 7: System.out.printIn("Sunday");
break;

} // Outputs "Thursday" (day 4

Loops
Loops can execute a block of code as long as a specified condition is reached.
Loops are handy because they save time, reduce errors, and they make code more

readable.

While Loop

The while loop loops through a block of code as long as a specified condition is true:

Example:

inti=0;

while (i < 5) {
System.out.printin(i);

)

}

For Loop 5
When you know exactly how many times you want to loop
through a block of code, use the for loop instead of
a while loop: .

Example:
for (inti=0;i<5;i++)

{

System.out.printin(i);

}

Nested Loops
It is also possible to place a loop inside another loop. This is
called a nested loop.

The "inner loop" will be executed one time for each iteration
of the "outer loop":

Example:
// Outer loop

for (inti=1;i<=2;i++)

{

System.out.printin("Outer: " +i); // Executes 2 times

// Inner loop

for (intj=1;j<=3; j++)

{

System.out.printin(" Inner: " +j); // Executes 6 times (2 * 3)
}

}

For-Each Loop
There is also a "for-each" loop, which is used exclusively to
loop through elements in an array:

Example:
String[] cars = {"Volvo", "BMW", "Ford", "Mazda"},
for (String i : cars)

{

System.out.printin(i);

Arrays

Arrays are used to store multiple values in a single variable, instead of
declaring separate variables for each value.

To declare an array, define the variable type with square brackets:

Example:
String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

int[] myNum = {10, 20, 30, 40};
String[] cars = {"Volvo", "BMW", "Ford", "Mazda"}

System.out.printIn(cars[0]);
// Outputs Volvo

Methods

A method is a block of code which only runs when it is called.
You can pass data, known as parameters, into a method.

Methods are used to perform certain actions, and they are also known
as functions. 5

Example:
public class Main {
static void myMethod()

{

// code to be executed

Method Overloading

With method overloading, multiple methods can have the same name with different

parameters:

Example:
static int plusMethodInt(int x, int y)
{

return x + vy,

}
static double plusMethodDouble(double x, double y)

{

return x +v;

}

public static void main(String[] args){

int myNum1 = plusMethodInt(8, 5);

double myNum?2 = plusMethodDouble(4.3, 6.26);
System.out.printin("int: " + myNum1);
System.out.printin("double: " + myNum2);

}

‘What is OOP?

- OOP stands for Object-Oriented Programming.

Procedural programming is about writing procedures or methods that perform
- operations on the data, while object-oriented programming is about creating objects
“that contain both data and methods.
- Object-oriented programming has several advantages over procedural programming: -
~+ OOP is faster and easier to execute

~* OOP provides a clear structure for the programs

~» OOP helps to keep the Java code DRY "Don't Repeat Yourself", and makes the
~ code easier to maintain, modify and debug

~+ OOP makes it possible to create full reusable applications with less code and
| shorter development time

objects

Volvo

Audi

Toyota

Classes/Objects

ava is an object-oriented programming language. -
Everything in Java is associated with classes and objects, along with its attributes and
methods. For example: in real life, a car is an object. The car has attributes, such as =

weight and color, and methods, such as drive and brake.
A Class is like an object constructor, or a "blueprint" for creating objects.

Example:
public class Main {

intx =5;

public static void main(String[] args)
{
Main myObj = new Main();
System.out.printin(myObj.x);

‘Inheritance |
In general the meaning of inheritance is something that you got from your
predecessor or parent, the same applies with java inheritance as well. Inheritance in
“java is @ mechanism by which one class is allowed to inherit the features(fields and -
“methods) of another class.

Different Types of Inheritance in Java
~* Single inheritance

-+ Multilevel inheritance

~* Hierarchical inheritance

Class A Class A Class A RN
I A / \ o
Class B Class B Class B Class C
: ST

Single Hierarchical SIS
Class C RN

Multilevel SRR

Single inheritance

Example:

class student

{

int roll;

String name;

void getdata()

{

roll = 101;

name = "Karim";

}

}

class display extends student

{

void display()

{

System.out.printin("Roll is :" + roll);
System.out.printin("Name is :" + name);

}
}

class single_inheritance

{

public static void main(String[] args)
{

display d = new display();
d.getdata();

d.display();

}

}

Multilevel Inheritace

Example:

class student

{

int roll;

String name;

float mark;

}

class exam extends student

{

void getdata()

{

roll=101;

name="Karim";

}

}

class result extends exam

{

void getmark()

{

mark=50.55f;

}

void display()

{

System.out.printin("Roll is "+roll);
System.out.printin("Name is "+name);
System.out.printin("Mark is "+mark);
}

}

class multilevel_inheritace

{

public static void main(String args[])
{

result r=new result();

r.getdata();

r.getmark();

r.display();

}

}

Hierarchical Inheritace

Example:

class student

{

int roll;

String name;

float mark;

}

class exam extends student

{

void getdata()

{

roll=101;

name="Karim";
System.out.printin("Roll is "+roll);
System.out.printin("Name is "+name);
}

}

class result extends student

{

void getmark()

{

mark=50.55f;
System.out.printIn("Mark is "+mark);
}

}

class p8

{

public static void main(String args[])
{

student st=new student();

exam e=new exam();

result r=new result();

e.getdata();

r.getmark();

}

}

Interface

In java programming language an interface is a reference type, similar as class, that
can contain only constants, method declaration

Syntax:

interface interfaceName {
// constant declarations
// Method signatures

}

Example :

interface Mylnterface {
int id = 20; void print();
public int calculateArea();

}

