
Subject Name: Java Programming  
Subject Code:28541 

Computer Science & Technology-4th Semester  

BulBul Ahamed 
Chief Instructor (Computer) 

Mymensingh Polytechnic Institute. 



What is Java? 
Java is a popular programming language, created in 1995. 
It is owned by Oracle, and more than 3 billion devices run 
Java. 

It is used for: 
• Mobile applications (specially Android apps) 
• Desktop applications 
• Web applications 
• Web servers and application servers 
• Games 
• Database connection 
• And much, much more! 



Why Use Java? 
 Java works on different platforms (Windows, Mac, Linux, 

Raspberry Pi, etc.) 
 It is one of the most popular programming language in the 

world 
 It has a large demand in the current job market 
 It is easy to learn and simple to use 
 It is open-source and free 
 It is secure, fast and powerful 
 It has a huge community support (tens of millions of 

developers) 
 Java is an object oriented language which gives a clear 

structure to programs and allows code to be reused, 
lowering development costs 

 As Java is close to C++ and C#, it makes it easy for 
programmers to switch to Java or vice versa 



Java Install 
Some PCs might have Java already installed. 
To check if you have Java installed on a Windows PC, 
search in the start bar for Java or type the following in 
Command Prompt (cmd.exe): 
 
C:\Users\Your Name>java –version 
 
If Java is installed, you will see something like this 
(depending on version): 
java version "11.0.1" 2018-10-16 LTS 
Java(TM) SE Runtime Environment 18.9 (build 11.0.1+13-LTS) 
Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11.0.1+13-LTS, mixed 
mode) 



Java Syntax 
public class Main {  
public static void main(String[] args) { 
System.out.println("Hello World");  
}  
} 
Every line of code that runs in Java must be inside a class. 
In our example, we named the class Main. A class should 
always start with an uppercase first letter. 
Note: Java is case-sensitive: "MyClass" and "myclass" has 
different meaning. 
 



Java Output / Print 
System.out.println("Hello World!"); 
System.out.println("I am learning Java."); 
System.out.println("It is awesome!"); 
 

Print Numbers 
System.out.println(3);  
System.out.println(358); 
System.out.println(50000); 



Java Comments 
Comments can be used to explain Java code, and to make 
it more readable. It can also be used to prevent execution 
when testing alternative code. 
 

Single-line Comments 
Single-line comments start with two forward slashes (//). 
 

Example 
// This is a comment 

Java Multi-line Comments 
/* The code below will print the words Hello World to the 
screen, and it is amazing */ 



Java Variables 
Variables are containers for storing data values. 
In Java, there are different types of variables, for example: 
 
• String - stores text, such as "Hello". String values are 

surrounded by double quotes 
• int - stores integers (whole numbers), without decimals, 

such as 123 or -123 
• float - stores floating point numbers, with decimals, 

such as 19.99 or -19.99 
• char - stores single characters, such as 'a' or 'B'. Char 

values are surrounded by single quotes 
• boolean - stores values with two states: true or false 



Declaring (Creating) Variables 
To create a variable, you must specify the 
type and assign it a value: 

Syntax 
type variableName = value; 

Example 
Create a variable called name of type String and assign it the value "John": 

String name = "John";  
System.out.println(name); 

int myNum;  
myNum = 15;  
System.out.println(myNum);  
 

String name = "John"; 
System.out.println("Hello " + name); 



Primitive Data Types 
A primitive data type specifies the size and type of variable values, 
and it has no additional methods. 
There are eight primitive data types in Java: 
 
 Data Type Size Description 

byte 1 byte Stores whole numbers from -128 to 127 

short 2 bytes Stores whole numbers from -32,768 to 32,767 

int 4 bytes Stores whole numbers from -2,147,483,648 to 2,147,483,647 

long 8 bytes Stores whole numbers from -9,223,372,036,854,775,808 to 
9,223,372,036,854,775,807 

float 4 bytes Stores fractional numbers. Sufficient for storing 6 to 7 decimal 
digits 

double 8 bytes Stores fractional numbers. Sufficient for storing 15 decimal digits 

boolean 1 bit Stores true or false values 

char 2 bytes Stores a single character/letter or ASCII values 



byte myNum = 100; System.out.println(myNum); 
short myNum = 5000; System.out.println(myNum); 
int myNum = 100000; System.out.println(myNum); 
long myNum = 15000000000L; 
System.out.println(myNum); 
float myNum = 5.75f; System.out.println(myNum); 
double myNum = 19.99d; System.out.println(myNum); 

Integer types stores whole numbers, positive or negative (such 
as 123 or -456), without decimals. Valid types 
are byte, short, int and long. Which type you should use, 

depends on the numeric value. 
Floating point types represents numbers with a fractional part, 
containing one or more decimals. There are two 
types: float and double. 



Java Operators 
Operators are used to perform operations on variables and values. 
In the example below, we use the + operator to add together two 

values: 

int sum1 = 100 + 50; // 150 (100 + 50)  
int sum2 = sum1 + 250; // 400 (150 + 250)  
int sum3 = sum2 + sum2; // 800 (400 + 400) 



Java divides the operators into the following 
groups: 

• Arithmetic operators 

• Assignment operators 

• Comparison operators 

• Logical operators 

• Bitwise operators 



Operator Name Description Example 

+ Addition Adds together two values x + y 

- Subtraction Subtracts one value from another x - y 

* Multiplication Multiplies two values x * y 

/ Division Divides one value by another x / y 

% Modulus Returns the division remainder x % y 

++ Increment Increases the value of a variable by 1 ++x 

-- Decrement Decreases the value of a variable by 1 --x 

Arithmetic Operators 
Arithmetic operators are used to perform common mathematical 
operations. 



Assignment Operators 
Assignment operators are used to assign values to variables. 
assignment operator (=) to assign the value 10 to a variable called x: 

int x = 10; 

Operator Example Same As 

= x = 5 x = 5 

+= x += 3 x = x + 3 

-= x -= 3 x = x - 3 

*= x *= 3 x = x * 3 

/= x /= 3 x = x / 3 

%= x %= 3 x = x % 3 

&= x &= 3 x = x & 3 

|= x |= 3 x = x | 3 

^= x ^= 3 x = x ^ 3 

>>= x >>= 3 x = x >> 3 

<<= x <<= 3 x = x << 3 



Comparison Operators 
Comparison operators are used to compare two values (or variables). 

int x = 5; int y = 3;  
System.out.println(x > y); // returns true, because 5 is higher than 3 

Operator Name Example 

== Equal to x == y 

!= Not equal x != y 

> Greater than x > y 

< Less than x < y 

>= Greater than or equal to x >= y 

<= Less than or equal to x <= y 



Logical Operators 
You can also test for true or false values with logical operators. 
Logical operators are used to determine the logic between variables or 
values: 

Operator Name Description Example 

&&  Logical 
and 

Returns true if both statements are 
true 

x < 5 &&  x < 10 

||  Logical 
or 

Returns true if one of the statements is 
true 

x < 5 || x < 4 

! Logical 
not 

Reverse the result, returns false if the 
result is true 

!(x < 5 && x < 
10) 



Strings 
Strings are used for storing text. 

String greeting = "Hello"; 
String txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";  
System.out.println("The length of the txt string is: " + txt.length()); 



Conditions and If Statements 

Less than: a < b 
Less than or equal to: a <= b 
Greater than: a > b 
Greater than or equal to: a >= b 
Equal to a == b 
Not Equal to: a != b 

if (condition) {  
// block of code to be executed if the condition is true  
} 
if (20 > 18) {  
System.out.println("20 is greater than 18");  
} 



else Statement 
Use the else statement to specify a block of code to be executed if the 
condition is false. 

Syntax: 
if (condition) { // block of code to be executed if the condition is true } 
else { // block of code to be executed if the condition is false } 
 

Example: 
int time = 20;  
if (time < 18) {  
System.out.println("Good day."); }  
else {  
System.out.println("Good evening."); } // Outputs "Good evening." 



else if Statement 
Use the else if statement to specify a new condition if the first 
condition is false. 

Example: 
int time = 22;  
if (time < 10) {  
System.out.println("Good morning."); }  
else if (time < 18) {  
System.out.println("Good day."); }  
else {  
System.out.println("Good evening."); } // Outputs "Good 
evening." 



Switch Statements 
Instead of writing many if..else statements, you can use 
the switch statement. 
The switch statement selects one of many code blocks to be executed: Example: 
int day = 4;  
switch (day) {  
case 1: System.out.println("Monday");  
break;  
case 2: System.out.println("Tuesday");  
break;  
case 3: System.out.println("Wednesday");  
break;  
case 4: System.out.println("Thursday");  
break;  
case 5: System.out.println("Friday");  
break;  
case 6: System.out.println("Saturday");  
break;  
case 7: System.out.println("Sunday");  
break;  

} // Outputs "Thursday" (day 4) 



Loops 
Loops can execute a block of code as long as a specified condition is reached. 
Loops are handy because they save time, reduce errors, and they make code more 
readable. 

 
While Loop 
The while loop loops through a block of code as long as a specified condition is true: 

Example: 
int i = 0;  
while (i < 5) {  
System.out.println(i);  
i++;  
} 



For Loop 
When you know exactly how many times you want to loop 
through a block of code, use the for loop instead of 
a while loop: 

Example: 
for (int i = 0; i < 5; i++)  
{  
System.out.println(i);  
} 

 



Nested Loops 
It is also possible to place a loop inside another loop. This is 
called a nested loop. 
The "inner loop" will be executed one time for each iteration 
of the "outer loop": 

Example: 
// Outer loop  
for (int i = 1; i <= 2; i++)  
{  
System.out.println("Outer: " + i); // Executes 2 times  
// Inner loop  
for (int j = 1; j <= 3; j++)  
{  
System.out.println(" Inner: " + j); // Executes 6 times (2 * 3)  
}  
}  



For-Each Loop 
There is also a "for-each" loop, which is used exclusively to 
loop through elements in an array: 

Example: 
String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};  
for (String i : cars)  
{  
System.out.println(i);  
} 



Arrays 
Arrays are used to store multiple values in a single variable, instead of 
declaring separate variables for each value. 
 

To declare an array, define the variable type with square brackets: 

Example: 
String[] cars = {"Volvo", "BMW", "Ford", "Mazda"}; 
 
int[] myNum = {10, 20, 30, 40}; 
 
String[] cars = {"Volvo", "BMW", "Ford", "Mazda"}; 
System.out.println(cars[0]);  
// Outputs Volvo 



Methods 
A method is a block of code which only runs when it is called. 
You can pass data, known as parameters, into a method. 
Methods are used to perform certain actions, and they are also known 
as functions. 

Example: 
public class Main {  
static void myMethod()  
{  
// code to be executed  
}  
} 



Method Overloading 
With method overloading, multiple methods can have the same name with different 
parameters: 

Example: 
static int plusMethodInt(int x, int y)  
{  
return x + y;  
}  
static double plusMethodDouble(double x, double y)  
{  
return x + y;  
}  
public static void main(String[] args){  
int myNum1 = plusMethodInt(8, 5);  
double myNum2 = plusMethodDouble(4.3, 6.26);  
System.out.println("int: " + myNum1);  
System.out.println("double: " + myNum2);  
} 



What is OOP? 
OOP stands for Object-Oriented Programming. 
Procedural programming is about writing procedures or methods that perform 
operations on the data, while object-oriented programming is about creating objects 
that contain both data and methods. 
Object-oriented programming has several advantages over procedural programming: 
• OOP is faster and easier to execute 
• OOP provides a clear structure for the programs 
• OOP helps to keep the Java code DRY "Don't Repeat Yourself", and makes the 

code easier to maintain, modify and debug 
• OOP makes it possible to create full reusable applications with less code and 

shorter development time 



Classes/Objects 
ava is an object-oriented programming language. 
Everything in Java is associated with classes and objects, along with its attributes and 
methods. For example: in real life, a car is an object. The car has attributes, such as 
weight and color, and methods, such as drive and brake. 
A Class is like an object constructor, or a "blueprint" for creating objects. 

Example: 
public class Main {  
int x = 5;  
public static void main(String[] args)  
{  
Main myObj = new Main();  
System.out.println(myObj.x);  
}  
}  



Inheritance 
In general the meaning of inheritance is something that you got from your 
predecessor or parent, the same applies with java inheritance as well. Inheritance in 
java is a mechanism by which one class is allowed to inherit the features(fields and 
methods) of another class. 

Different Types of Inheritance in Java 
• Single inheritance 
• Multilevel inheritance 
• Hierarchical inheritance 



Example: 
class student 
{ 
int roll; 
String name; 
void getdata() 
{ 
roll = 101; 
name = "Karim"; 
} 
} 
class display extends student 
{ 
void display() 
{ 
System.out.println("Roll is :" + roll); 
System.out.println("Name is :" + name); 
} 
} 
class single_inheritance 
{ 
public static void main(String[] args) 
{ 
display d = new display(); 
d.getdata(); 
d.display(); 
} 
} 

Single inheritance 



Example: 
class student 
{ 
int roll; 
String name; 
float mark; 
} 
class exam extends student 
{ 
void getdata() 
{ 
roll=101; 
name="Karim"; 
} 
} 
class result extends exam 
{ 
void getmark() 
{ 
mark=50.55f; 
} 
void display() 
{ 
System.out.println("Roll is "+roll); 
System.out.println("Name is "+name); 
System.out.println("Mark is "+mark); 
} 
} 
class multilevel_inheritace 
{ 
public static void main(String args[]) 
{ 
result r=new result(); 
r.getdata(); 
r.getmark(); 
r.display(); 
} 
} 
 
 

 Multilevel Inheritace 



Example: 
class student 
{ 
int roll; 
String name; 
float mark; 
} 
class exam extends student 
{ 
void getdata() 
{ 
roll=101; 
name="Karim"; 
System.out.println("Roll is "+roll); 
System.out.println("Name is "+name); 
} 
} 
class result extends student 
{ 
void getmark() 
{ 
mark=50.55f; 
System.out.println("Mark is "+mark); 
} 
} 
class p8 
{ 
public static void main(String args[]) 
{ 
student st=new student(); 
exam e=new exam(); 
result r=new result(); 
e.getdata(); 
r.getmark(); 
} 
} 

 Hierarchical Inheritace 



Syntax: 
interface interfaceName {  
// constant declarations  
// Method signatures  
}  
 
Example :  
interface MyInterface {  
int id = 20; void print();  
public int calculateArea();  
}  

 Interface 
In java programming language an interface is a reference type, similar as class, that 
can contain only constants, method declaration 



 Thank You 


