
Subject Name: Java Programming
Subject Code:28541

Computer Science & Technology-4th Semester

BulBul Ahamed
Chief Instructor (Computer)

Mymensingh Polytechnic Institute.

What is Java?
Java is a popular programming language, created in 1995.
It is owned by Oracle, and more than 3 billion devices run
Java.

It is used for:
• Mobile applications (specially Android apps)
• Desktop applications
• Web applications
• Web servers and application servers
• Games
• Database connection
• And much, much more!

Why Use Java?
 Java works on different platforms (Windows, Mac, Linux,

Raspberry Pi, etc.)
 It is one of the most popular programming language in the

world
 It has a large demand in the current job market
 It is easy to learn and simple to use
 It is open-source and free
 It is secure, fast and powerful
 It has a huge community support (tens of millions of

developers)
 Java is an object oriented language which gives a clear

structure to programs and allows code to be reused,
lowering development costs

 As Java is close to C++ and C#, it makes it easy for
programmers to switch to Java or vice versa

Java Install
Some PCs might have Java already installed.
To check if you have Java installed on a Windows PC,
search in the start bar for Java or type the following in
Command Prompt (cmd.exe):

C:\Users\Your Name>java –version

If Java is installed, you will see something like this
(depending on version):
java version "11.0.1" 2018-10-16 LTS
Java(TM) SE Runtime Environment 18.9 (build 11.0.1+13-LTS)
Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11.0.1+13-LTS, mixed
mode)

Java Syntax
public class Main {
public static void main(String[] args) {
System.out.println("Hello World");
}
}
Every line of code that runs in Java must be inside a class.
In our example, we named the class Main. A class should
always start with an uppercase first letter.
Note: Java is case-sensitive: "MyClass" and "myclass" has
different meaning.

Java Output / Print
System.out.println("Hello World!");
System.out.println("I am learning Java.");
System.out.println("It is awesome!");

Print Numbers
System.out.println(3);
System.out.println(358);
System.out.println(50000);

Java Comments
Comments can be used to explain Java code, and to make
it more readable. It can also be used to prevent execution
when testing alternative code.

Single-line Comments
Single-line comments start with two forward slashes (//).

Example
// This is a comment

Java Multi-line Comments
/* The code below will print the words Hello World to the
screen, and it is amazing */

Java Variables
Variables are containers for storing data values.
In Java, there are different types of variables, for example:

• String - stores text, such as "Hello". String values are

surrounded by double quotes
• int - stores integers (whole numbers), without decimals,

such as 123 or -123
• float - stores floating point numbers, with decimals,

such as 19.99 or -19.99
• char - stores single characters, such as 'a' or 'B'. Char

values are surrounded by single quotes
• boolean - stores values with two states: true or false

Declaring (Creating) Variables
To create a variable, you must specify the
type and assign it a value:

Syntax
type variableName = value;

Example
Create a variable called name of type String and assign it the value "John":

String name = "John";
System.out.println(name);

int myNum;
myNum = 15;
System.out.println(myNum);

String name = "John";
System.out.println("Hello " + name);

Primitive Data Types
A primitive data type specifies the size and type of variable values,
and it has no additional methods.
There are eight primitive data types in Java:

 Data Type Size Description

byte 1 byte Stores whole numbers from -128 to 127

short 2 bytes Stores whole numbers from -32,768 to 32,767

int 4 bytes Stores whole numbers from -2,147,483,648 to 2,147,483,647

long 8 bytes Stores whole numbers from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

float 4 bytes Stores fractional numbers. Sufficient for storing 6 to 7 decimal
digits

double 8 bytes Stores fractional numbers. Sufficient for storing 15 decimal digits

boolean 1 bit Stores true or false values

char 2 bytes Stores a single character/letter or ASCII values

byte myNum = 100; System.out.println(myNum);
short myNum = 5000; System.out.println(myNum);
int myNum = 100000; System.out.println(myNum);
long myNum = 15000000000L;
System.out.println(myNum);
float myNum = 5.75f; System.out.println(myNum);
double myNum = 19.99d; System.out.println(myNum);

Integer types stores whole numbers, positive or negative (such
as 123 or -456), without decimals. Valid types
are byte, short, int and long. Which type you should use,

depends on the numeric value.
Floating point types represents numbers with a fractional part,
containing one or more decimals. There are two
types: float and double.

Java Operators
Operators are used to perform operations on variables and values.
In the example below, we use the + operator to add together two

values:

int sum1 = 100 + 50; // 150 (100 + 50)
int sum2 = sum1 + 250; // 400 (150 + 250)
int sum3 = sum2 + sum2; // 800 (400 + 400)

Java divides the operators into the following
groups:

• Arithmetic operators

• Assignment operators

• Comparison operators

• Logical operators

• Bitwise operators

Operator Name Description Example

+ Addition Adds together two values x + y

- Subtraction Subtracts one value from another x - y

* Multiplication Multiplies two values x * y

/ Division Divides one value by another x / y

% Modulus Returns the division remainder x % y

++ Increment Increases the value of a variable by 1 ++x

-- Decrement Decreases the value of a variable by 1 --x

Arithmetic Operators
Arithmetic operators are used to perform common mathematical
operations.

Assignment Operators
Assignment operators are used to assign values to variables.
assignment operator (=) to assign the value 10 to a variable called x:

int x = 10;

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

Comparison Operators
Comparison operators are used to compare two values (or variables).

int x = 5; int y = 3;
System.out.println(x > y); // returns true, because 5 is higher than 3

Operator Name Example

== Equal to x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Logical Operators
You can also test for true or false values with logical operators.
Logical operators are used to determine the logic between variables or
values:

Operator Name Description Example

&& Logical
and

Returns true if both statements are
true

x < 5 && x < 10

|| Logical
or

Returns true if one of the statements is
true

x < 5 || x < 4

! Logical
not

Reverse the result, returns false if the
result is true

!(x < 5 && x <
10)

Strings
Strings are used for storing text.

String greeting = "Hello";
String txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
System.out.println("The length of the txt string is: " + txt.length());

Conditions and If Statements

Less than: a < b
Less than or equal to: a <= b
Greater than: a > b
Greater than or equal to: a >= b
Equal to a == b
Not Equal to: a != b

if (condition) {
// block of code to be executed if the condition is true
}
if (20 > 18) {
System.out.println("20 is greater than 18");
}

else Statement
Use the else statement to specify a block of code to be executed if the
condition is false.

Syntax:
if (condition) { // block of code to be executed if the condition is true }
else { // block of code to be executed if the condition is false }

Example:
int time = 20;
if (time < 18) {
System.out.println("Good day."); }
else {
System.out.println("Good evening."); } // Outputs "Good evening."

else if Statement
Use the else if statement to specify a new condition if the first
condition is false.

Example:
int time = 22;
if (time < 10) {
System.out.println("Good morning."); }
else if (time < 18) {
System.out.println("Good day."); }
else {
System.out.println("Good evening."); } // Outputs "Good
evening."

Switch Statements
Instead of writing many if..else statements, you can use
the switch statement.
The switch statement selects one of many code blocks to be executed: Example:
int day = 4;
switch (day) {
case 1: System.out.println("Monday");
break;
case 2: System.out.println("Tuesday");
break;
case 3: System.out.println("Wednesday");
break;
case 4: System.out.println("Thursday");
break;
case 5: System.out.println("Friday");
break;
case 6: System.out.println("Saturday");
break;
case 7: System.out.println("Sunday");
break;

} // Outputs "Thursday" (day 4)

Loops
Loops can execute a block of code as long as a specified condition is reached.
Loops are handy because they save time, reduce errors, and they make code more
readable.

While Loop
The while loop loops through a block of code as long as a specified condition is true:

Example:
int i = 0;
while (i < 5) {
System.out.println(i);
i++;
}

For Loop
When you know exactly how many times you want to loop
through a block of code, use the for loop instead of
a while loop:

Example:
for (int i = 0; i < 5; i++)
{
System.out.println(i);
}

Nested Loops
It is also possible to place a loop inside another loop. This is
called a nested loop.
The "inner loop" will be executed one time for each iteration
of the "outer loop":

Example:
// Outer loop
for (int i = 1; i <= 2; i++)
{
System.out.println("Outer: " + i); // Executes 2 times
// Inner loop
for (int j = 1; j <= 3; j++)
{
System.out.println(" Inner: " + j); // Executes 6 times (2 * 3)
}
}

For-Each Loop
There is also a "for-each" loop, which is used exclusively to
loop through elements in an array:

Example:
String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};
for (String i : cars)
{
System.out.println(i);
}

Arrays
Arrays are used to store multiple values in a single variable, instead of
declaring separate variables for each value.

To declare an array, define the variable type with square brackets:

Example:
String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

int[] myNum = {10, 20, 30, 40};

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};
System.out.println(cars[0]);
// Outputs Volvo

Methods
A method is a block of code which only runs when it is called.
You can pass data, known as parameters, into a method.
Methods are used to perform certain actions, and they are also known
as functions.

Example:
public class Main {
static void myMethod()
{
// code to be executed
}
}

Method Overloading
With method overloading, multiple methods can have the same name with different
parameters:

Example:
static int plusMethodInt(int x, int y)
{
return x + y;
}
static double plusMethodDouble(double x, double y)
{
return x + y;
}
public static void main(String[] args){
int myNum1 = plusMethodInt(8, 5);
double myNum2 = plusMethodDouble(4.3, 6.26);
System.out.println("int: " + myNum1);
System.out.println("double: " + myNum2);
}

What is OOP?
OOP stands for Object-Oriented Programming.
Procedural programming is about writing procedures or methods that perform
operations on the data, while object-oriented programming is about creating objects
that contain both data and methods.
Object-oriented programming has several advantages over procedural programming:
• OOP is faster and easier to execute
• OOP provides a clear structure for the programs
• OOP helps to keep the Java code DRY "Don't Repeat Yourself", and makes the

code easier to maintain, modify and debug
• OOP makes it possible to create full reusable applications with less code and

shorter development time

Classes/Objects
ava is an object-oriented programming language.
Everything in Java is associated with classes and objects, along with its attributes and
methods. For example: in real life, a car is an object. The car has attributes, such as
weight and color, and methods, such as drive and brake.
A Class is like an object constructor, or a "blueprint" for creating objects.

Example:
public class Main {
int x = 5;
public static void main(String[] args)
{
Main myObj = new Main();
System.out.println(myObj.x);
}
}

Inheritance
In general the meaning of inheritance is something that you got from your
predecessor or parent, the same applies with java inheritance as well. Inheritance in
java is a mechanism by which one class is allowed to inherit the features(fields and
methods) of another class.

Different Types of Inheritance in Java
• Single inheritance
• Multilevel inheritance
• Hierarchical inheritance

Example:
class student
{
int roll;
String name;
void getdata()
{
roll = 101;
name = "Karim";
}
}
class display extends student
{
void display()
{
System.out.println("Roll is :" + roll);
System.out.println("Name is :" + name);
}
}
class single_inheritance
{
public static void main(String[] args)
{
display d = new display();
d.getdata();
d.display();
}
}

Single inheritance

Example:
class student
{
int roll;
String name;
float mark;
}
class exam extends student
{
void getdata()
{
roll=101;
name="Karim";
}
}
class result extends exam
{
void getmark()
{
mark=50.55f;
}
void display()
{
System.out.println("Roll is "+roll);
System.out.println("Name is "+name);
System.out.println("Mark is "+mark);
}
}
class multilevel_inheritace
{
public static void main(String args[])
{
result r=new result();
r.getdata();
r.getmark();
r.display();
}
}

 Multilevel Inheritace

Example:
class student
{
int roll;
String name;
float mark;
}
class exam extends student
{
void getdata()
{
roll=101;
name="Karim";
System.out.println("Roll is "+roll);
System.out.println("Name is "+name);
}
}
class result extends student
{
void getmark()
{
mark=50.55f;
System.out.println("Mark is "+mark);
}
}
class p8
{
public static void main(String args[])
{
student st=new student();
exam e=new exam();
result r=new result();
e.getdata();
r.getmark();
}
}

 Hierarchical Inheritace

Syntax:
interface interfaceName {
// constant declarations
// Method signatures
}

Example :
interface MyInterface {
int id = 20; void print();
public int calculateArea();
}

 Interface
In java programming language an interface is a reference type, similar as class, that
can contain only constants, method declaration

 Thank You

