বিসমিল্লাহির রাহমানীর রাহীম

সবাইকে

স্বাগতম

শিক্ষক পরিচিতি

शাছিবা গাওহার
জুনিয়র ইন্বট্রাকটর (মেকানিক্যাল)
ময়মনসিংহ পলিটেকনিক ইনসणিটিটট

বিষয়

ইজ্জিনিয়ারিং থার্মোডায়নামিক্স (৬৭০৬১)
 ৬ষ্ঠ পর্ব মেকানিক্যাল
 ১ম ও ২য় শিফট

তাপ গতিবিদ্যার ধারনা

- বিজ্ঞানের যে শাখায় তাপ ও কাজের সম্পর্ক নিয়ে আলোচনা করা হয় তাকে তাপ গতিবিদ্যা বলে .
- এর প্রয়োগক্ষেত্র :
- ১.স্টিম পাওয়ার প্লান্ট

। ২.নিউক্লিয়ার পাওয়ার প্লান্ট
৷ ৩.কম্পেসর

- $8 . গ ্ য া স ~ ট া র ব া ই ন ~$
- ৫.রেফ্রিজারেটর .
- ৬.এয়ারকন্ডিশনিং .

তাপ,তাপমাত্রা

- তাপ: তাপ এক প্রকার শক্তি, যা গরম বা ঠাড্ডার অনুভূতি জাগায় .তাপের একক ক্যানরি .
- তাপ পরিমাপক যন্র্রের নাম ক্যানরিমিটার .
- তাপমাত্রা:তাপমাত্রা হলো কোন বঙ্তুর তাপীয় অবস্তা,যা অন্য কোন বন্তুর তাপীয় সংস্মপ্রে আসন্গে তাপ গ্রহন করে বা বর্জন করে . এর একক ডিগ্রি, সেলসিয়াস,ফারেনহাইট ,কেলভিন .
- তাপমাত্রা পরিমাপক যত্র্রের নাম থার্মোমিটার .

তাপমাত্রার বিভিন্ন ক্কেলের মধ্যে সম্পক

Heat and Temperature

```
Summary
> Sources of Heat
> Uses af Heat
> Heat and Temperature
> Temperatureseales
```


488	$K=4+8515$
c-7	$E F=E x+1 E!$
$\mathbf{X} \times \mathbf{F}$	

$\frac{T_{E}}{5}-\frac{T_{r}-32}{9}=\frac{T_{k}-273}{g}$

ক্ষমত|

Department of
 PHYSICS \& ASTRONOMY
 The Relationship Between Heat and Temperature
 THE UNIVERSITY OF UTAH
 The Heat Capacity of an Object

Amount of heat (energy) that needs to be added to the object in order to raise its temperature by 1 degree Kelvin.

$$
\begin{array}{llll}
\text { If } Q>0 & \text { then } T_{\text {final }}>T_{\text {initial }} & \text { (temperature rises) } \\
\text { If } Q<0 & \text { then } T_{\text {final }}<T_{\text {initial }} & \text { (temperature drops) }
\end{array}
$$

তাপগতিবিদ্যার সুত্রসমূহ

। ১ম সুত্র: তাপ শক্তি যাত্রিক শক্তিতে অথবা যাত্রিক শক্তি তাপ শক্তিজে রুপান্তর হলে রুপান্তরিত যাত্রিক শক্তি ও সৃষ্ট তাপশক্তি সমানুপাতিক.
। ২য় সুত্র: বাহিরের কোনো কারক ব্যাতিরেকে শীতল বস্তু হতে গরম বস্তুতে তাপ স্তানান্তর সম্ভব নয় .
। ৩য় সুত্র: পরম শ্তন্য তাপমাত্রায় সকল আদর্শ পদার্থের এন্ট্রপি শূন্য হয়.

তাপগতিবিদ্যার ১ম সুত্রের ব্যাখ্যা

First Law of Thermodynamics

System Surroundings

$$
\Delta u=q+w \quad w=-\quad \text { by the system }
$$

তাপগতিবিদ্যার ২য় সুত্রের ব্যাখ্যা

There exists a useful thermodynamic variable called entropy (S). A natural process that starts in one equilibrium state and ends in another will go in the direction that causes the entropy of the system plus the environment to increase for an irreversible process and to remain constant for a reversible process.

$$
S_{f}=S_{i} \text { (reversible) } \quad S_{f}>S_{i} \text { (irreversible) }
$$

তাপগতিবিদ্যার ৩য় সুত্রের ব্যাখ্যা

Third Law of Thermodynamics

In decreasing order of Temperature

In decreasing order of kinetic energy

১ম,২য়,৩য় এবং জিরোথ লও

Thermal systems
If $T_{A}=T_{B}, T_{B}=T_{C}$, then $T_{A}=T_{C}$

Conservation of energy, $\Delta E^{t o t}=$ $Q+W$, where Q is heat and W is work.
The second law

The third law
The first law

Entropy tends to increase, $\Delta S \geq 0$

Absolute zero temperature is

Granular powders
Same
$T_{g p}^{A}=T_{g p}^{C}$

Same
$\Delta S \geq 0$
unattainable, $T \neq 0$

Same
$\Delta E^{t o t}=Q+W$

Same
$T_{a p} \neq 0$

তাপগতীয় প্রক্রিয়া

- তাপগতীয় প্রক্রিয়াः যে পরিবর্তনের কারনে তাপগতীয় ম্জানাংকের মান পরিবরর্তন হয় সে পরিবর্তনকে তাপগতীয় প্রক্রিয়া বলা হয় .
১.ন্তির আয়তন প্রক্রিয়া
২.স্টির চাপ প্রক্রিয়া
৩.অবিচল প্রবাহ প্রক্রিয়া

8 .অनবিচল প্রবাহ প্রক্রিয়া
৫.প্রত্যাবর্তক প্রকিযযয়া
৬.অপ্রত্যাবর্তক প্রক্রিয়া .

PV \& TS Diagram

Types of Thermodynamic Processes
Reversible: Can happen slowly in either direction.
Irreversible: Involves net increase in entropy (can't go backwards).
The types illustrated at right for a sample of ideal gas:
1 Isothermal: Constant temperature ($\mathrm{P}=\mathrm{nRT} / \mathrm{V}=$ constant/V)
2 Isobaric: Constant pressure P
3 Isochoric: Constant volume V
4 Adiabatic: No heat added

volime V

আদর্শ গ্যাসের এন্ট্রপি

কোন গ্যাসের এন্ট্রপি হল ,কোন ধরে নেওয়া শূন্য এন্ট্রপি হতে নির্ধারিত
তাপগতীয় অবন্তা প্রাপ্ত হতে প্রতি ডিগ্রি পরম তাপমাত্রার জন্য স্তানাস্তরিত তাপ শক্তির পরিমান .
এক কথায় বলা হয়, এন্ট্রপি হল কোন সিস্টেম্মের বিসৃংখলার পরিমান .
অথবা কোন প্রবাহী কর্তৃক গৃহীক বা বর্জিত তাপকে তার পরম তাপমাত্রা দ্বারা ভাগ করলে যে রাশি পাওয়া যায় তাকে এন্ট্রপি বলে .

এন্ট্রপির ব্যাখ্যা

Entropy

Entropy is the measure of the disorder of a system

থার্মেডডাইনামিক সাইকেল

P-V and T-S Diagram of
Otto Cycle

Rangkin Cycle

3

কারনট সাইকেল

রেফ্রিজারেটরের কার্যপ্রনালী

রেফ্রিজারেশন শব্দের অর্থ হল হিমায়ন, কোন বঞ্তুর তাপমাত্রা কমিয়ে শীতল করে শীতলতা বজায় রাখার প্রক্রিয়াকে হিম|য়ক বলে . এ ক্ষেত্রে যে প্রবাহী ব্যাবহার করা হয় তাকে রেফ্রিজারেনট বলে .এই প্রবাহী মূলত তাপ গ্রহন করে নিজে উত্তণ্ত হয় কিন্তু পরিপ্বার্শর খাদ্যদ্রব্যকে সতেজ রাঞে .
রেফ্রিজারেটরের প্রধান প্রয়োগক্ষেত্র হল, বরফ টৈরি, খাদ্য সংরক্ষন, ওষদ সংরক্ষন,এয়ার কভ্ডিশন , শিল্প কারখানা ইত্যাদি। এটি কত্ডেনসার, কন্স্রেসর,ইভাপোরেটর ও এক্সপানশন ভালবের সমন্ব়্ে কাজ করে .

রেফ্রিজারেটর সাইকেল

বয়লার

বয়লার একটি বদ্ধ প্রকোষ্ট, যেখানে তাপ শট্টি প্রয়োগের মাধ্যমে পানিকে বাষ্পে পরিনত করা হয় .এটি সাধারনত স্টিলের হয়ে থাকে . এটি মূলত ২ প্রকার
১.ওয়াটার টিউব বয়লার

২ফায়ার টিউব বয়লার .
যে বয়লারের টিউবের ভিতরে আগুন থাকে কিন্তু বাহিরে পানি থাকে তা হল ফায়ার টিউব .
আর যদি ভিতরে পানি বাহিরে আগুন থাকলে ওয়াটার টিউব বয়লার .

বয়লারের চিত্র

এটি হল শক্তি উৎপাদনকারী যন্ত্র, প্রাকৃতিক শক্তিকে কাজে লাগিয়ে যান্ত্রিক শক্তি উৎপাদন করা হয় .
এটি ২ প্রকার :

1. চেট্রোল ইজ্ঞিন (আই সি ই:)
২.ডিজেল ইজ্ঞিন .(সি আই ই:)

আবার, ইজ্ঞিন ২ প্রকার,
টু স্ট্রোক ইজ্ঞিন এবং ফোর স্ট্রোক ইজ্ঞিন .

8 স্ট্রোক পেট্রোল ইজ্ঞিন

2 Stroke Diesel Engine

TWO STROKE ENGINE

圆號

Vapour Absorption Refrigeration System

Vapour Absorption Refrigeration System

গ্যাসের সুত্র

Purpose of the Experiment

To demonstrate the complexities involved in measuring properties of gases related to:
1.) Complications in weighing due to the buoyancy of air;
2.) Problems in pressure measurements over water; and,
3.) Non-ideality of Gases.

গ্যাসের বৈশিষ্ট

Physical Characteristics	Typical Units
Volume, V	liters (L)
Pressure, \mathbf{P}	atmosphere $\left(1 \mathrm{~atm}=1.015 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)$
Temperature, \mathbf{T}	Kelvin (\mathbf{K})
Number of atoms or molecules, \mathbf{n}	mole $\left(1 \mathrm{~mol}=6.022 \times 10^{23}\right.$ atoms or molecules $)$

"Father of Modern Chemistry" Robert Boyle
Chemist \& Natural Philosopher - istmore, Ireland

January 25, 1627~omber 30, 1690

বয়েলের সুত্র

* Pressure and volume are inversely related at constant temperature.
* PV = K
* As one goes up, the other goes down.
$\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$

বয়েলের সুত্র পরীক্ষা
 $: \mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}{ }^{p=2.0 \mathrm{~atm}}$

বয়েলের সুত্র প্রতিপাদন $P_{1} V_{1}=P_{2} V_{2}$

চার্লসের সুত্র

* Volume of a gas varies directly with the absolute temperature at constant pressure.
* $V=\mathrm{KT}$
* $V_{1} / T_{1}=V_{2} / T_{2}$

Jacques-Alexandre Charles Mathematician, Physicist, Inventor Beaugency, France
November 12, 1746 - April 7, 1823

চার্লসের সুত্রের ব্যাখ্যা $\mathrm{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{\mathbf{2}} / \mathrm{T}_{2}{ }^{1 \mathrm{~atm}}$

$T=200 \mathrm{~K}$

$$
V=1.0 \mathrm{~L}
$$

$$
T=400 \mathrm{~K}
$$

চার্লসের সুত্র প্রতিপাদন

অ্যাভোগ্গেডোর সুত্র

* At constant temperature and pressure, the volume of a gas is directly related to the number of moles.
*V $=\mathrm{K}$ n
$V_{1} / n_{1}=V_{2} / n_{2}$
Amedeo Avogadro
Physicist
Turin, Italy
Auoust 9, 1776 - July 9, 1856

অ্যাভোগ্গেডোর সুত্রের ব্যাখ্যা $V_{1} / n_{1}=V_{2} / n_{2}$

$n=2 \mathrm{~mol}$

গ্যা লুসাকের সুত্র

* At constant volume, pressure and absolute temperature are directly related.
* $\mathbf{P}=\mathrm{k}$ T
* $\mathrm{P}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} / \mathrm{T}_{2}$

Joseph-Louis Gay-Lussac Experimentalist
Limoges, France
December 6, 1778 - May 9, 1850

* The total pressure in a container is the sum of the pressure each gas would exert if it were alone in the container.
* The total pressure is the sum of the partial pressures.
$P_{\text {Total }}=P_{1}+P_{2}+P_{3}+P_{4}+P_{5} \ldots$
(For each gas $\mathbf{P}=\mathbf{n R T} / V)$

John Dalton
Chemist \& Physicist
Eaglesfield, Cumberland, England September 6, 1766 - July 27, 1844

ডাল্টনস ল বর্ণনা

(a) 5.0 L at $20^{\circ} \mathrm{C}$
(b) 5.0 L at $20^{\circ} \mathrm{C}$
(c) 5.0 L at $20^{\circ} \mathrm{C}$

ভেপারের চাপ

Water evaporates!

* When that water evaporates, the vapor has a pressure.
* Gases are often collected over water so the vapor pressure of water must be subtracted from the total pressure.

আদর্শ ও বাম্তব গ্যাসের প্রার্থক্য

Ideal Gas

Real Gas

Obey PV=nRT	Always	Only at very low P and high T
Molecular volume	Zero	Small but nonzero
Molecular attractions	Zero	Small
Molecular repulsions	Zero	Small

বাস্তব গ্যাস

* Real molecules do take up space and do interact with each other (especially polar molecules).
* Need to add correction factors to the ideal gas law to account for these.

Ideally, the VOLUME of the molecules was neglected:
Ar gas, \sim to scale, in a box $3 \mathrm{~nm} \times 3 \mathrm{~nm} \times 3 \mathrm{~nm}$
at 1 Atmosphere Pressure

at 10 Atmospheres Pressure

at 30 Atmospheres Pressure

But since real gases do have volume, we need:

আয়তন সঠিকীকরন

The actual volume free to move in is less because of particle size.

* More molecules will have more effect.
* Corrected volume $\mathbf{V}^{\prime}=\mathbf{V}-\mathbf{n b}$
"b" is a constant that differs for each gas.

চাপ সঠিকীকরন

* Because the molecules are attracted to each other, the pressure on the container will be less than ideal.
* Pressure depends on the number of molecules per liter.
* Since two molecules interact, the effect must be squared.

$$
\mathrm{P}_{\text {observed }}=\mathrm{P}-\mathrm{a}\left(\frac{\mathrm{n}}{\mathrm{~V}}\right)^{2}
$$

Van der Waal's equation

$\left[\mathrm{P}_{\text {obs }}+\mathrm{a}\left(\frac{\mathrm{n}}{\mathrm{V}}\right)^{2}\right](\mathrm{V}-\mathrm{nb})=\mathrm{nRT}$
Corrected Pressure Corrected Volume

* "a" and "b" are determined by experiment
"a" and "b" are different for each gas
bigger molecules have larger "b"
"a" depends on both size and polarity

Johannes Diderik van der Waals Mathematician \& Physicist

Leyden, The Netherlands
November 23, 1837 - March 8, 1923

Compressibility Factor

The most useful way of displaying this new law for real molecules is to plot the compressibility factor, \mathbf{Z} :

For $\mathbf{n}=1$
Z = PV / RT

Ideal Gases have $Z=\mathbf{1}$

Part 1: Molar Volume of Butane

ight of the butane refill cartridge is recorded as acouratehy as nnected to the upright butane cartridge

neck of the fiask as in A beiow (e bent piece of gless tubing +

> Page 194-195 in your Lab Packet

If you would like to take notes, these slides start on page 201 of your Lab Packet.

Molar mass of butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)=\ldots \mathrm{g} / \mathrm{mole}$

Mass of butane: \qquad
n or $\mathrm{n}_{\mathrm{B}}=$ \qquad

Molar mass of butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)=\ldots \mathrm{g} / \mathrm{mole}$

$$
(12.011 \times 4)+(1.008 \times 10)=58.124
$$

Mass of butane: \qquad
Initial weight of cartridge - final weight of cartridge
n or $\mathrm{n}_{\mathrm{B}}=$ \qquad
mass of butane
Molar mass of butane

Ask your TA for the
 Lab Temperature and Pressure*

$$
\begin{aligned}
& \mathrm{T}=\ldots \quad \mathrm{P}={ }_{2}{ }^{\circ} \mathrm{C} \quad \text { torr } \quad \mathrm{V}=\ldots \ldots \mathrm{L} \\
& \mathrm{~T}=\ldots \mathrm{K} \quad \mathrm{P}=\ldots \text { atm } \\
& 0.500 \mathrm{~L}
\end{aligned}
$$

Note: $K={ }^{\circ} \mathrm{C}+273.15 \& 1 \mathrm{~atm}=760$ torr

Apparent molar volume, $\left(\mathrm{V}_{\mathrm{m}}=\mathrm{V} / \mathrm{n}\right)$ of butane at experimental $\mathrm{T} \& \mathrm{P}: \quad \mathrm{V}_{\mathrm{m}}=\ldots \quad \mathrm{L} /$ mole

$$
0.500 \mathrm{~L} \longrightarrow \mathbf{V} / \mathbf{n} \longleftrightarrow \mathrm{n} \rightarrow \text { Calculated earlier }
$$

*These will be posted on the chalkboard. Verify the valutere for your session before recording in your book.

Apparent molar volume of butane at $\mathrm{STP} ; \mathrm{V}_{\mathrm{m}}=$ L/mole

calculate $\longrightarrow \mathrm{V}_{\mathrm{m}}=\frac{\mathrm{V}}{\mathrm{n}} \longleftarrow \mathrm{V}_{2}$

Partial pressure of water vapor in flask:
 $$
\mathrm{P}_{\mathrm{w}}=\ldots \quad \text { torr }
$$

$$
\mathrm{P}_{\mathrm{w}}(\text { torr })=e^{x}
$$

Partial pressure of butane in flask: torr atm

Partial pressure of butane: $\mathrm{P}_{\mathrm{vdw}}=$
 \qquad atm

Compressibility factor for butane : $\mathrm{Z}_{\mathrm{B}}=$

Partial pressure of butane in flask (atm)
Calculated earlier

calculate $\longrightarrow \mathrm{Z}_{\mathrm{B}}=\frac{\mathrm{P}_{\mathrm{B}} \mathrm{n}}{\mathrm{n}_{\mathrm{B}} \mathrm{RT}} \quad$ Lab temperature (K)
already calculated
0.08206 L.atm/mole. K

Estimated second Virial Coefficient for Butane at room temperature:

$$
\mathrm{B}_{\mathrm{B}}=\ldots \mathrm{L} / \mathrm{mole}
$$

Part 2: Buoyancy Effect Filling Ziplok bag with butane gas

Page 197
in your
Lab Packet

Discrepancy is the difference between these two masses

Discrepancy: g

Moles of Butane in bag: $\mathrm{n}=$ \qquad moles

Calculated volume of Butane in bag: ___ L

```
Calculated in previous step
calculate \(\longrightarrow \mathrm{V}=\frac{\left.\stackrel{\downarrow}{\mathrm{n}} \times \mathrm{B}_{\mathrm{B}} \longleftarrow \quad \begin{array}{l}\text { Estimated second Virial Coefficient } \\ \text { for Butane at room temperature }\end{array}\right)}{}\) \(\left(Z_{B}-1\right) \quad\) Calculated in Part 1 (p 195).
Compressibility factor for Butane
Calculated in Part 1 (p 195).
```

Estimated density of air at experimental T and $\mathrm{P}: \mathrm{d}=\ldots \ldots \mathrm{g} / \mathrm{L}$
Buoyancy effect of displaced volume of air
(the mass discrepancy)

\uparrow
Calculated volume of Butane in bag (calculated in previous step)

Estimated Molar mass of air: g/mole

Estimated density of air $\quad 0.08206$ L.atm/mole. K (calculated in previous step)

Lab pressure (atm)

Part 3: Conservation of Mass

Gas generating reaction in a closed system

Part 3: Conservation of Mass
 Gas generating reaction in a closed system

Molar mass of $\mathrm{NaHCO}_{3}: \ldots \quad \mathrm{g} / \mathrm{mole}$

Moles of NaHCO_{3} : \qquad mole

Part 3: Conservation of Mass Gas generating reaction in a closed system

Molar mass of NaHCO_{3} :

$(22.990)+(1.008)+(12.011)+(3 \times 15.999)=84.006 \mathrm{~g} / \mathrm{mole}$

Moles of NaHCO_{3} : \qquad mole

$$
\text { moles }=\frac{\text { mass }}{\text { Molar mass }}
$$

Weight of bag and reaction components:
Before reaction: \qquad g after reaction :

Discrepancy is the difference between these two weights.
Discrepancy:

Estimated volume of expansion: \qquad L

calculate $\longrightarrow \mathrm{V}=\frac{\text { weight discrepancy }}{}$ density of air

Determined in Part 2 (p 197).

Reaction:

$\underline{1} \mathrm{NaHCO}_{3}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq}) \rightarrow \ldots \ldots+\underline{\mathrm{CO}_{2}}(\mathrm{~g})+$

\qquad
Expected moles of $\mathrm{CO}_{2}(\mathrm{gas})$: \qquad moles

Expected volume of gas at laboratory T \& P: \qquad 0.08206 L.atm/mole.K

Expected moles of CO_{2} (from previous step)

calculate $\longrightarrow \mathrm{V}_{\mathrm{gas}}=\frac{\mathrm{P}_{\mathrm{atm}} \longleftarrow}{\left[\mathrm{P}^{2}\right.}$ Lab pressure (atm)

$$
1-\left[\frac{\mathrm{P}_{\mathrm{w}}}{\mathrm{C}} / \mathrm{P}_{\mathrm{atm}}\right\rfloor \text { Lab pressure (atm) }
$$

Partianessure of water vapor. (Note: Convert your Pw to atm.)
(Yom-alculated Pw in torr in Part 1 - p 195.)

Check Out from the Stockroom

1000 ml beaker
500 ml volumetric flask
Tygon tubing with Hook
Butane cylinder
1 piece of plastic wrap
1 quart Ziploc Bag
5 dram vial with lid*

Clean Up:

*Dispose of liquid waste in appropriate container. Rinse vial and lid with water and return them to the stockroom.

Hazards:

50% Acetic acid (corrosive, sharp, irritating odor)
Butane (flammable)

Sgalun liquid waste for NaHCO_{3} and acetic acid

This Week: April 28-30

Turn In: Gas Laws Experiment pp. 195-199 + calculations page.*

* Students must do all calculations before leaving lab, due to the complex nature of the calculations.
* Calculations must be shown on a separate piece of paper, with units to the correct number of significant figures. Datasheets need to be in ink, but calculations may be done with pen or pencil.

Calculations scribbled in the margins of the lab pages are NOTACCEPTABLE.

Evaluation Forms:

To evaluate Chem 1319, you should be receiving an email from the CET Committee with the following link:
https://itweb.mst.edu/auth-cgi-bin/cgiwrap/distanceed/evals/survey.pl
The Chemistry Outstanding TA Awards are based on these evaluations.
So please complete the evaluations, as TAs without enough surveys completed are not considered eligible for the award.

-BRIAN'S GUIDE TO STUDYING

Don't be a dumb bunny! - Study!

এই পাঠ সম্পর্কিত তোমাদের কোন প্রশ্ন

 আছে কি?$$
\begin{aligned}
& \text { V|ল్লা|c } \\
& \text { হাফেজ }
\end{aligned}
$$

