Surveying-III(26453)

5st Semester
Civil Technology
Providan-2022

Presented By

Zahangir Alam

Instructor (Civil)
Mymensingh Polytechnic Institute
Maskanda, Mymensingh

5th Semester Student

Subject: Surveying-III

Subject Code: 66453

Per Week: Theory– 2 Practical – 3 Credit-3

5th Semester Student

Subject: Surveying-III

Subject Code: 66453

Per Week: Theory– 2 Practical – 3 Credit-3

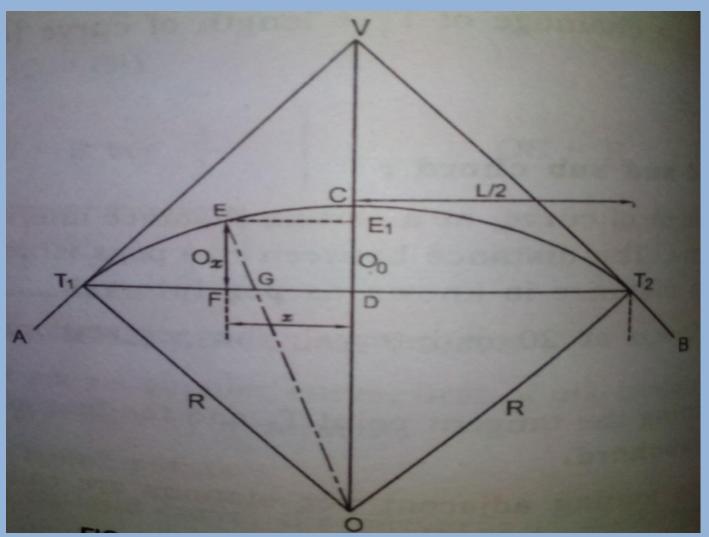
MYMENSINGH POLYTECHNIC INSTITUTE

CIVIL TECHNOLOGY

TOPIC OF LECTURE

Setting out of curve

Methods of setting out simple circular curve


Based on the instruments used in setting out the curves on the ground there are two methods:

- 1) Linear method
- 2) Angular method

Linear Method

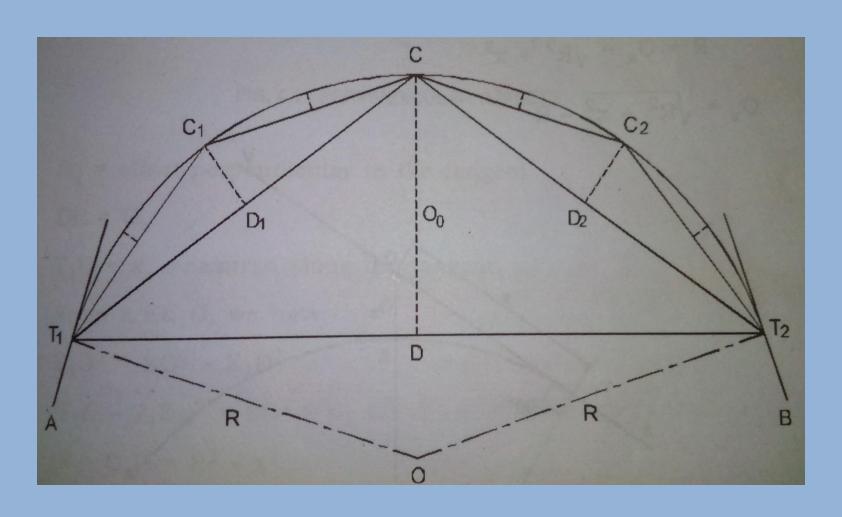
- In these methods only tape or chain is used for setting out the curve. Angle measuring instrument are not used.
 - Main linear methods are
- **By** offsets from the long chord.
- By successive bisection of arcs.
- By offsets from the tangents.
- By offsets from chords produced.

By offsets from the long chord

R = Radius of the curve

0o = Mid ordinate

Ox = ordinate at distance x from the mid point

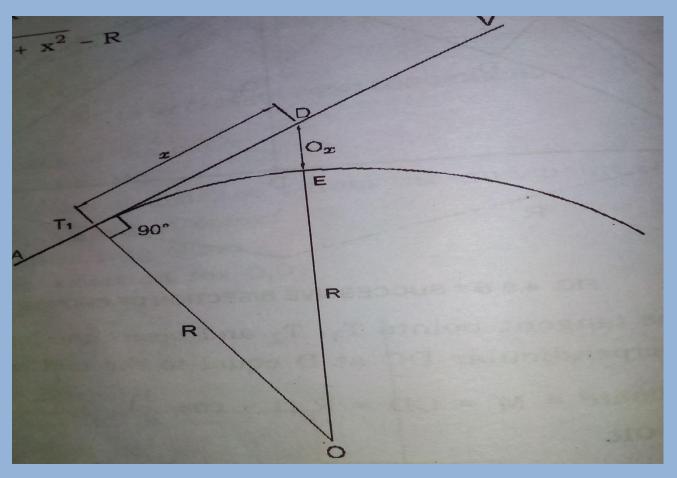

of the chord

T1 and T2 = Tangent point

$$0o = R - \sqrt{R^2 - (\frac{L}{2})^2}$$

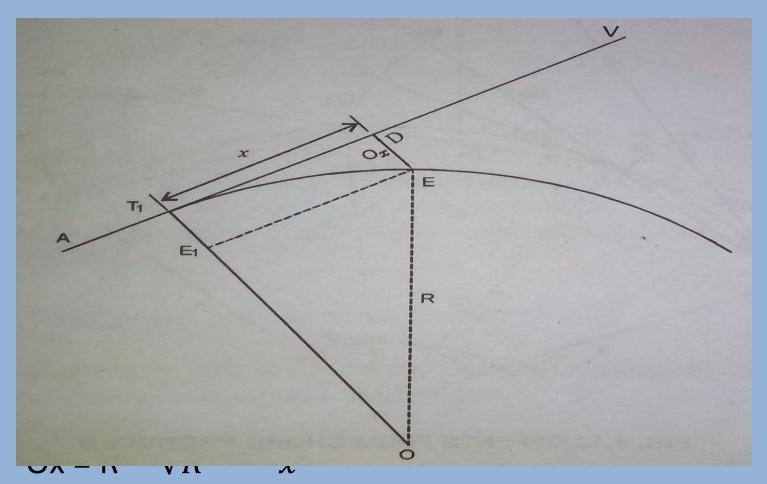
$$0x = \sqrt{(R^2 - x^2) - (R - 0o)}$$

By successive bisection of arcs

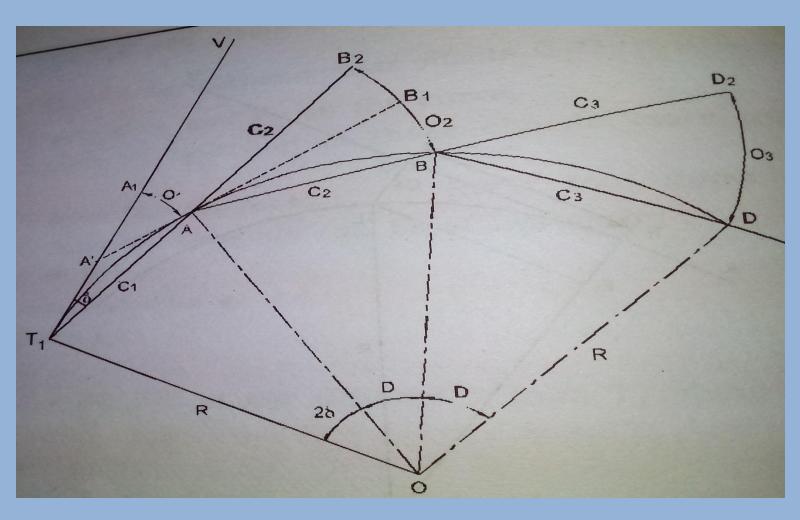


- ➤ Join the tangent points T1,T2 and bisect the long chord at D.
- ➤ Erect perpendicular DC at D equal to the mid ordinate.
- ➤ Join T1C and T2C and bisect them at D1 and D2 respectively.
- > D1 & D@ set out perpendicular offsets C1D1=C2D2=(1-- $\cos \frac{\Delta}{4}$) and obtain points C1 and C2 on the curve.

By offsets from the tangents


- ➤ The offsets from the tangents can be of two types
 - 1) Radial offsets
 - 2) Perpendicular offsets

1) Radial offsets



$$0X = \sqrt{R^2 + x^2} - R$$

2) Perpendicular offsets

By offsets from chords produced

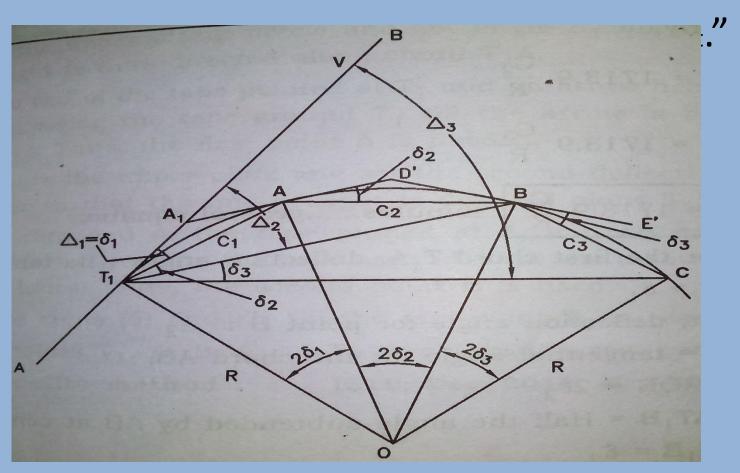
$$01 = \frac{C1^{2}}{2R}$$

$$02 = \frac{C1^{2}}{2R} (C1 + CL)$$

$$03 = 04 = O_{n-1} = \frac{Cl^{2}}{2R} (2CL) = \frac{CL^{2}}{R}$$

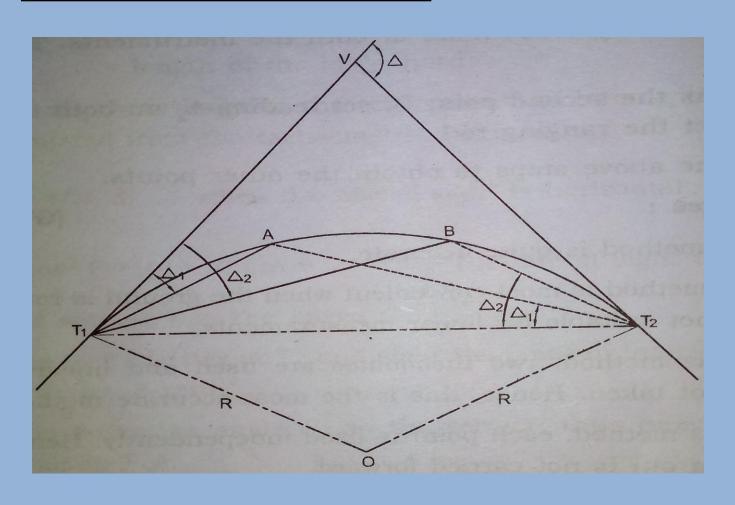
$$0n = \frac{C'}{2R} (CL + C')$$

Angular Method

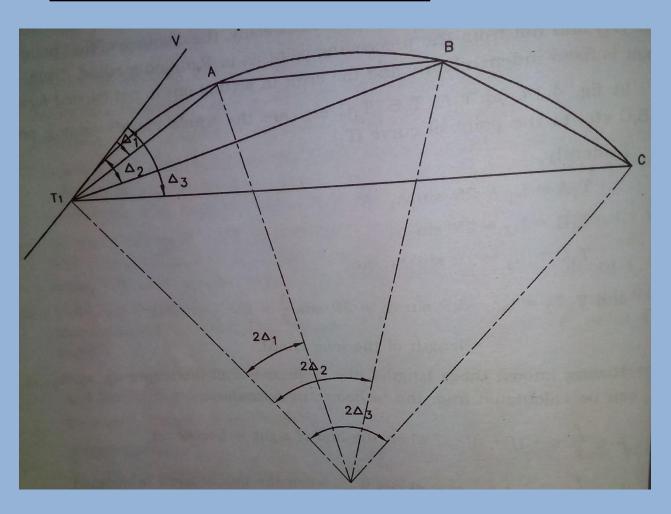

This methods are used when the length of curve is large.

The Angular methods are:

- 1) Rankine method of tangential angles
- 2) Two theodolite method
- 3) Tacheometric method


Rankine method of tangential angles

A deflection angle to any point on the curve is the angle at p.c.


- \triangleright Set out T_1 and T_2 .
- \triangleright Set the theodolite T_1 .
- ➤ With both the plates clamped to zero, direct the theodolite to bisect the point of intersection.
- \triangleright Release the upper clamp screw and set angle $\triangle 1$ o the vernier.
- ➤ With zero end of the tape pointed at T1 and an narrow held at a distance T1A=C1 swing the tape around T1 till the arrow is bisected by the cross hairs.
- \triangleright Release the upper plate and set the second deflection angle Δ_2 on the vernier so that the line of sight is directed along T1B.
- ➤ With the zero end of the tape pinned at Avand an arrow held at a distance AB = C2 swing the tape around A till the narrow is bisected by the cross hairs.
- > Repeat the steps 6,7 till the last point T2 is reached.
- Join the points T1,A,B,C....T2

Two theodolite Method

- In this method two theodolites are used one at P.C and the other at P<T.
- In this method tape/chain is not required. This method used when the ground is unsuitable for chaining.
- > < VT_1 A = Δ_1 = Deflection angle for A.
- \gt < A T_2 T is the angle subtended by the chord T1A in the opposite segment.
- \rightarrow (A T_2T_2 =<VT1A= Δ_1)
- $> < VT_1B = \Delta_2 = < T_1T_2B$

Tacheometric method

- \triangleright Set the tacheometer at T_1 and sight the point of intersection when the reading is zero.
- \triangleright Set the deflection angle Δ_1 on the vernier, thus directing the line of sight along T_1A .
- ightharpoonup Direct the staff man to move in the direction T_1 A till the calculated staff intercept S_1 is obtained. The staff is generally held vertical. First point A is fixed.
- \triangleright Set the deflection angle Δ_2 directing the line of sight along T_1 B. Move the staff backward or forward untill the staff intercept S_2 is obtained thus fixing the point B.
- > Same other points are fixed.

375)192

পাঠ পরিচিতি

বিষয়: সার্ভেয়িং-৩

বিষয় কোড: ৬৬৪৫৩

পর্ব: ৫ম

টেকনোলজী: সিভিল

বাঁকের সংজ্ঞাঃ

বাঁক হলো কোন বৃত্ত বা অতিবৃত্তের একটি অংশ বা চাপ বিশেষ যা কৌণিক ভাবে ছেদকৃত দুটি সরলরেখাকে সংযুক্ত করে।

বাকের প্রয়োজনীয়তাঃ

- (১)যানবাহক্ষে দূর্ঘটনার হাত থেকে রক্ষা করে।
- (২)খালের পার্শ্বদেশের ক্ষয়রোধ করে।
- (৩)রাস্তার দিক পরিবর্তনে যাত্রীদের আরাম্প্রদ ভ্রমণ ও নিরাপত্তা বিধান করে।
- (৪)সরলরেখাদ্বয়ের ছেদবিন্দুতে হঠাৎ দিক
 পরিবর্তনজনিত অসুবিধা দূর করার জন্য
 ক্রমান্বয়ে দিক পরিবর্তনের লক্ষ অর্জন করে।
- (৫)রাস্তার দৈর্ঘ্য হ্রাসকরণের জন্য বাঁকের প্রয়োজন হয়।
- (৬)দূরপাল্লার রাস্তায় যাত্রীদের একঘেয়েমি দূর করার জন্য বাক সংস্থাপন করে।

- বাঁকের শ্রেণিবিভাগঃ
- বাঁক প্রধানত দুই প্রকারঃ
- ্বত্তাকার বাঁক তিন প্রকারঃ
- অধিবৃত্তাকার বাঁক দুই প্রকারঃ
- ক্রান্তি বাঁক তিন প্রকারঃ
- উল্লম্ব বাঁক দুই প্রকারঃ

- (১) বৃত্তাকার বাঁক
- (২) অধিবৃত্তাকার বাঁক
- (১)সরল বাঁক
- (২)যৌগিক বাঁক
- (৩)বিপরীতমুখী বাঁক
- (১)ক্রান্তি বাঁক
- (২)উল্লম্ব বাঁক
- (১)সর্পিল বাঁক
- (২)ত্রিমাত্রিক অধিবৃত্ত
- (৩)লেমনিস্কেট অব বার্নোলি
- (১) উত্তল বাঁক
- (২)অবতল বাঁক

- বৃত্তাকার বাঁক এবং বাঁকের নামকরণঃ
- বৃত্তাকার বাকঃ এক বা একাধিক বৃত্তচাপের মাধ্যমে যে বাঁক সংস্থাপন করা হয় তাকে বৃত্তাকার বাঁক বলা হয়। বৃত্তাকার বাঁকের ক্ষেত্রে একই বৃত্তচাপের সকল অংশে ব্যাসার্ধের কোন পরিবর্তন হয় না। কিন্তু অধিবৃত্তীয় বাঁকের ব্যাসার্ধি সকল বিন্দুতেই পরিবর্তনশীল। বাঁকের ক্ষেত্রে ব্যাসার্ধের পরিমাণ অধিক বিধায় সংস্থাপনকালে কার্যক্ষেত্রে এ মাপ নিয়ে বৃত্তচাপ সংস্থাপন সম্ভব নয়।তাই বাঁককে কতোগুলা ছোট ছোট জ্যা তে বিভক্ত করে নেয়া হয়। সচরাচর এ জ্যা এর পরিমাণ ৩০ মিটার ধরা হয়। কোন কোন ক্ষেত্রে ২০ মিটার দৈর্ঘ্যের জ্যা ধরেও হিসাব করা হয়।
- বৃত্তাকার বাঁক তিন ধরনের।যথাঃ
- (১) সরল বাঁক
- (২) যৌগিক বাঁক
- (৩) বিপরীত বাঁক

- সরল বাঁকের নামকরণ
- বাঁকের নামকরণ দুই প্রকারে হয়ে থাকে।যথাঃ
- (ক) ডিগ্রিতে (খ) ব্যাসার্ধে
- বাঁকের ৩০ মিটার জ্যা কেন্দ্রে যত ডিগ্রি কোণ উৎপন্ন করে তাকে তত ডিগ্রি বাঁকে নামকরণ করা হয়। যদি বাঁকের ৩০ মিটার জ্যা কেন্দ্রে ১ ডিগ্রি বাঁক। এরূপে ২ ৩ ৪ ডিগ্রি বাঁক ইত্যাদি নামে বাঁকের নামকরণ করা হয়। বাংলাদেশ, ভারত, আমেরিকাসহ অনেক দেশেই বাঁকের নামকরণ ডিগ্রিতে করা হয়ে থাকে।
- ইংল্যান্ড ও তদানুকরণীয় দেশগুলো বাঁকের ব্যাসার্ধ অনুযায়ী বাঁকের নামকরণ করা হয়ে থাকে। এ সকল দেশ গুলোতে যদি বাঁকের ব্যাসার্ধ ১০০ মিটার হয় তবে তাকে ১০০ মিটার বাঁক নামে আখ্যায়িত করা হয়। এরূপভাবে ২০০ মিটার বাক,১০ শিকল বাঁক ইত্যাদি নামে নামকরণ করা হয়ে থাকে।

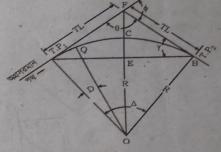
১.৩.১ বৃত্তাকার বাঁকের অল্ডলোর তালিকা (List of the Elements of Simple Curve)

অগ্রসরমান পথের বাম দিকের বাঁককে বাম হাতি বাঁক (Left hand curve) এবং ডান দিকের বাঁককে ডান হাতি বাঁক (Right hand curve) বঁলা হয়। নিম্নে একটি ডান হাতি বাঁকের অঙ্গগুলোর তালিকা দেওয়া হলো।

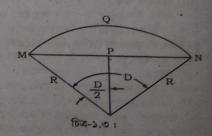
- ছেদবিন্দ্ = F
- বাঁকের স্পর্শক AF ও BF প্রথম স্পর্শক AF দ্বিতীয় স্পর্শক BF
- প্রথম স্পর্শক বিন্দু বা বাঁক বিন্দু (Point of curvature) = TP1
- বাঁকের শেষ বিন্দু বা স্পর্শক বিন্দু (Point of tangency) = TP2
- বাঁকের শীর্ষবিন্দ = C (v)
- বাঁকের ছেদ কোণ, ∠AFB = 0
- বাঁকের প্রতিসরণ কোণ ∠BFG = ф
- (viii) বাঁকের কেন্দ্রীয় কোণ, ∠AOB = ∆
- মোট স্পর্শক কোণ, ∠EBF = γ
- বাঁকের ডিগ্রি, ∠ AOQ = D (x)
- প্রথম জ্যা = AQ
- (xii) প্রথম জ্যা (AQ)-এর স্পর্শক কোণ = ∠FAQ
- (xiii) বাঁকের দৈর্ঘ্য (1) = ACB
- (xiv) अर्भक देमचा (T)= AF = BF
- वाँ (क्र वाँ जार्भार्थ (R) = OA = OB = OC
- (xvi) দীর্ঘ জ্যা (L) = AB
- (xvii) বাঁকের গভীরতা বা বহিঃদূরত্ব = FC
- (xviii) বাঁকের মধ্য অভিনেট বা ভারসাইন = EC
- (xix) সেকেন্ট দৈর্ঘ্য (Secant length) = FO

(Formula for Finding of a Circular Curve)

বাঁকের মাত্রা (ডিগ্রি) বাড়লে বাঁকের ব্যাসার্ধ কমে, আবার বাঁকের ব্যাসার্ধ বাড়লে বাঁকের মাত্রা (ডিগ্রি) কমে। একই দৈর্ঘ্যের জ্যা-এর জন্য কেন্দ্রস্থ কোণের পরিমাণ বাড়লে বাঁকের ব্যাসার্ধের পরিমাণ কমবে অর্থাৎ বাঁকের বক্রতার পরিমাণ বৃদ্ধি পাবে। আবার একই দৈর্ঘ্যের জ্যা-এর জন্য কেন্দ্রস্থ কোণের পরিমাণ কমলে বাঁকের ব্যাসার্ধের পরিমাণ বৃদ্ধি পাবে অর্থাৎ বাঁকের বক্রতা হাস পাবে। কাজেই বাঁকের মাত্রা (ডিথি) ও বাঁকের ব্যাসার্ধের মধ্যে সম্পর্ক বিদ্যমান। নিচে বাঁকের মাত্রা (ডিথি) ও বাঁকের ব্যাসার্ধের মধ্যকার সম্পর্ক ও বাঁকের ব্যাসার্ধ নির্ণয়ের সূত্র নির্ণয় করা হলো।


- R = বাঁকের ব্যসার্ধ মিটারে
- D = বাঁকের মাত্রা (ডিগ্রিতে)
- P = জ্যা-এর মধ্যবিন্দু।
- MN = জ্যা এর দৈর্ঘ্য

বুরুচাপ বিবেচনায় (By are definition) :


ব্রুচাপ MON জ্যা MN = 30 মিটার ধরে

$$360^{\circ}: D^{\circ} = 2\pi R: 30$$

_. $360 2\pi R$

$$R = \frac{360 \times 30}{2\pi D} = \frac{1719}{D}$$
 মিটার

विज-३.२:

দ্বিতীয় অধ্যায়

রৈখিক পদ্ধতিতে বাক সংস্থাপন

এই পদ্ধতির সাহায্য সাধারণত চার প্রক্রিয় বাক সংস্থাপন করা যায়।

১। দীঘ্র জ্যা হতে অফসেটের সাহায্যে ২।স্পশক হতে অফসেটের সাহায্যে ৩। জ্যা কে আকাধিক্রম দ্বিখন্ডিত করে ৪।বধিত জ্যা হতে অফসেটের সাহায্যে বধিত জ্যা হতে অফসেটের সাহায্যে মনে করি AF= প্রথম স্পশক

Oc হতে X দুরত্বে অফসেট এর পরিমান
AE= দীর্ঘ জ্যা এর অর্ধেক=L/2
EC=ভারসাইন
O=বাকের কেন্দ্র
R=বাকের ব্যাসার্ধ

সুবিধা হলো স্পাক বিশুৰত এবং বাজে নামক চুন্দির বেশি না হলে সন্তোমজনক ফলাফল পাওয়া যাত। ভবে মধ্যবর্তী কোনো স্টেশনের স্রান্তির প্রভাব-এর পরবর্তা সক্ষ জন্মত বৃত্তি স্থাপনে এ পদ্ধতিটি বেশ উপযোগী এবং জনপথের বাঁক স্থাপনে সাধারণত এ পদ্ধতিটি ব্যবহার করা হয়ে থাকে।

২.২ দীর্ছ জ্যা হতে অফসেটের সাহায্যে বাঁক সংস্থাপনের সূত্র ্ষ্বিকলামার for Setting Out Curve by Ordinate From Long Chord)

মনে করি, AF = প্রথম স্পর্শক

Ov = OC হতে x দ্রত্বে অফসেট বা অর্ভিনেটের পরিমাণ

$$\mu = AE = দীর্ঘ জ্যা এর অর্ধেক = $\frac{L}{2}$$$

$$OP^2 = PO^2 + OO^2$$

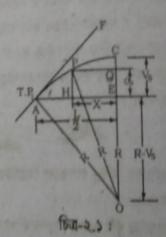
$$\Rightarrow$$
 R² = X² + (OE + O_x)²

$$\Rightarrow$$
 OE + O_x = $\sqrt{R^2 - X^2}$

$$\Rightarrow O_x = \sqrt{R^2 - X^2} - OE$$

$$\Rightarrow$$
 $O_x = \sqrt{R^2 - X^2 - (R - V_a)}$ (i) আবার গ্রিভুজ OAE হতে

 $R^2 = \left(\frac{L}{2}\right)^2 + (R^{\perp} V_a)^2$

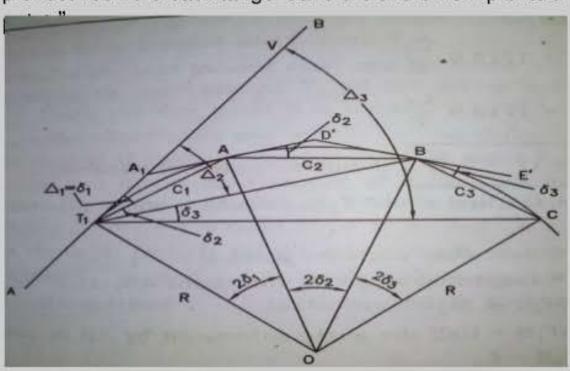

$$\Rightarrow R - V_s = \sqrt{R^2 - \left(\frac{L}{2}\right)^2}$$

$$\Rightarrow V_s = R - \sqrt{R^2 - (L/2)^2}....(ii)$$

(i) নং সমীকরণে (ii) নং সমীকরণ হতে V_s এর মান বসিয়ে পাই,

$$O_{x} = \sqrt{R^{2} - X^{2}} - \left[R - \left\{ R - \sqrt{R^{2} - \left(\frac{L}{2}\right)^{2}} \right\} \right]$$

$$\Rightarrow O_{x} = \sqrt{R^{2} - X^{2}} - \sqrt{R^{2} - \left(\frac{L}{2}\right)^{2}}$$

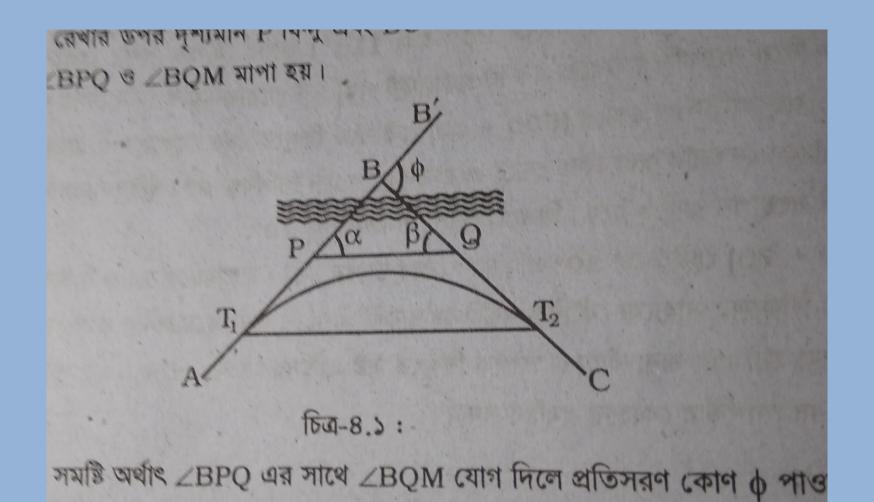


তৃতীয় অধ্যায়

- কৌণিক পদ্ধতিতে বাক সংস্থাপন
- এই পদ্ধতির সাহায্য সাধারণত চার প্রক্রিয় বাক সংস্থাপন করা যায়।
- ১। এক থিওডোলাইট পদ্ধতি বা রাঙ্কিনের স্পর্শকীয় কোণ পদ্ধতি
- ২। দুই থিওডোলাইট পদ্ধতি
 - ৩। টেকোমেট্রিক পদ্ধতি
 - ৪। টোটাল স্টেশন পদ্ধতি

Rankine method of tangential angles

"A deflection angle to any point on the curve is the angle at p.c. between the back tangent and the chord from p.c. to that


বাক স্থাপনের জন্য প্রয়োজনীয় তথ্যাদি

- প্রতিসরণকোণেরমাননির্ণয় =১০৮-ছেদ কোণ
- বাকেরব্যার্সাধR= 1719/D
- বাকেরদৈর্ধ্য = $\pi R \emptyset / 180$
- স্পর্শকদৈর্ঘ্য =Rtan Ø/2
- ১ম স্পৃশক বিন্দুরচেইনেজ=ছেদ বিন্দুর চেইনেজ-স্পর্শক দৈর্ধ্য
- শেষ স্প্রশাকবিন্দুর চেইনেজ= ১ম স্প্রশাক বিন্দুর চেইনেজ+বাকের
 দৈর্ধ্য

- ১ম উপ জ্যার্দৈঘ্য
- শেষ উপ জ্যা দৈঘ্য
- মোটজ্যাসংখা
- ullet ১ম স্পর্শককোণ $\delta=1719rac{C1}{R}$
- \bullet শেষ স্পর্শক কোণ δ = 1719~Cn/R

চতুর্থ অধ্যায়

- বাক সংস্থাপনে বাধা বিপত্তি
- বাক সংস্থাপনে সাধারণত নিম্নলিখিত বাধা বিপত্তি দেখা যায়
- যখন ছেদ বিন্দু,বাক বিন্দু এবং স্পর্শক বিন্দু থেকে অগম্য
- যখন বাধার কারণে স্পর্শক বিন্দু থেকে বাকের সর্ম্পূণ দৈধ্য দেখা
 না যায় ।
- যখন বাধা জন্য শিকল বা ফিতা দ্বার মাপা না যায় ।
- যখন বাক বিন্দু ও ছেদ বিন্দু উভয়ই অগম্য

পঞ্চম অধ্যায়

ক্ৰান্তি বাক

রাস্তার সরল অংশ ও বৃত্তাকার বাকের মাঝে পরিবর্তনশীল ব্যাসার্ধের যে অধিবৃত্তাকার বাক কল্পনা করা হয় তাকে ক্রান্তি বাক বলে ।

ক্রান্তি বাকের প্রয়োজনীয়তাঃ

গাড়িকে দুর্ঘটনার হাত থেকে রক্ষা করার জন্য রাষ্টার ভিতরে ও বাহিরে সমান চাপ প্রয়োগ করতে সহায়তা কওে গাড়িকে সোজা পথ থেকে বৃতাকার পথে এবং বৃতাকার পথ থেকে সোজা পথে উত্তরণে সাহায্য করে ।

fig: transition curve

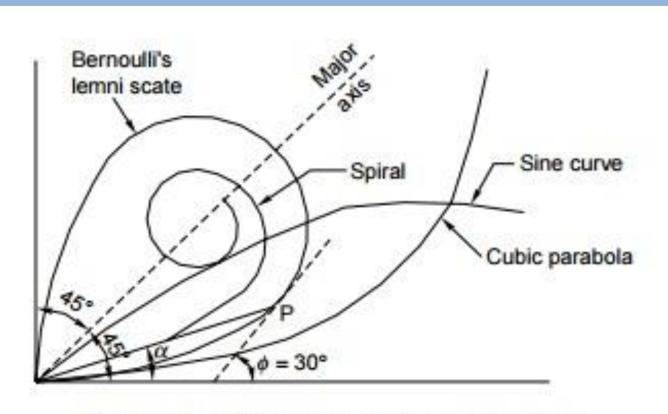
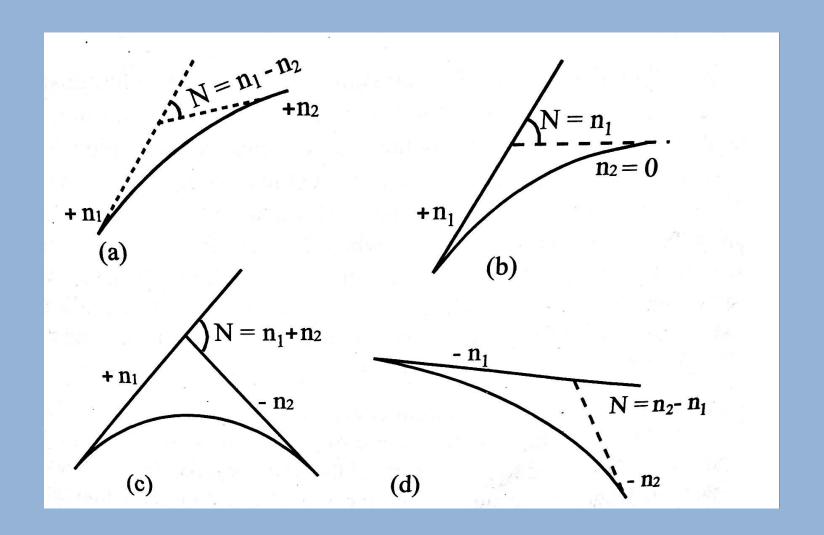
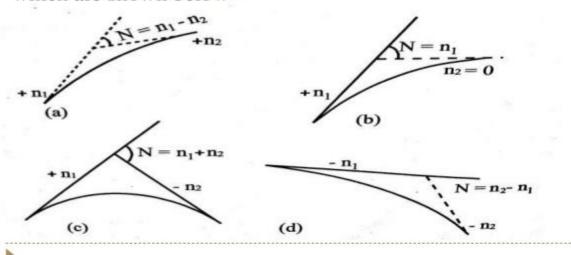



Fig. 13.11 Different types of transition curves

ষষ্ঠ অধ্যায়

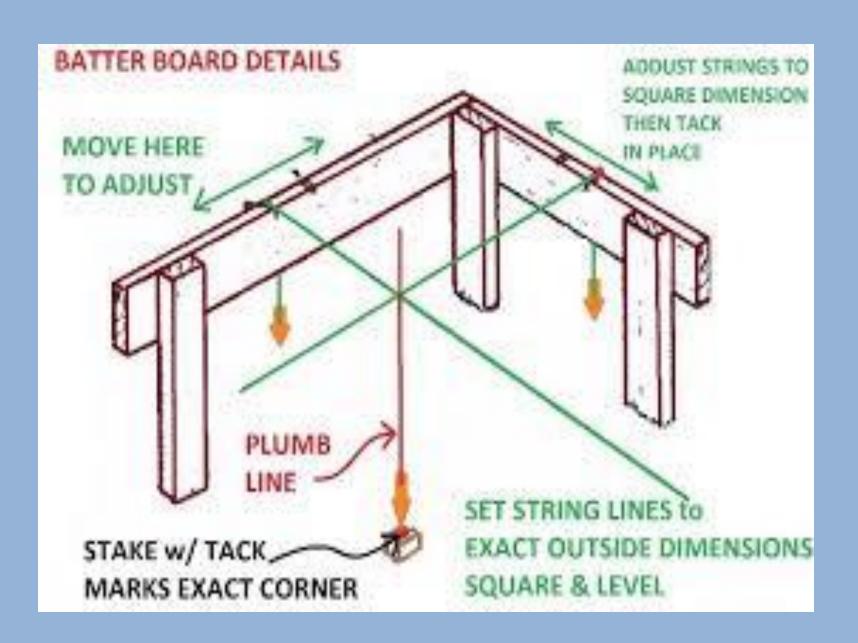
উল্লুম্ব বাক

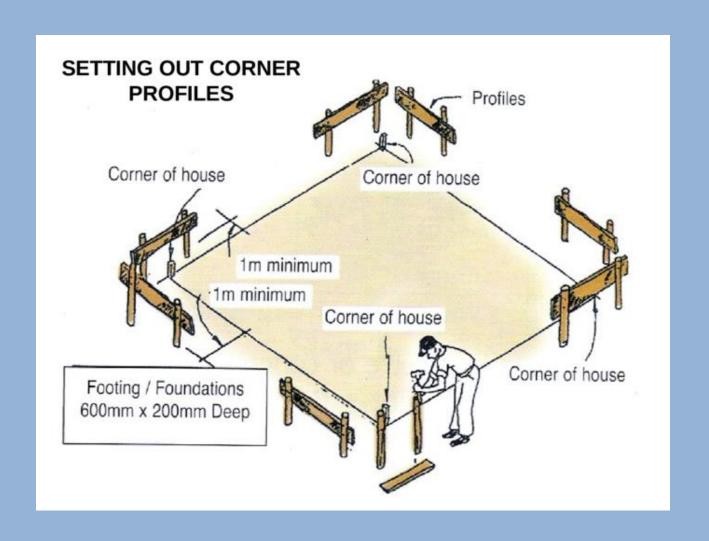

সড়ক পথ বা রেলপথে বিপরীত দুটি ঢাল বা ভিন্নধর্মী দুটি ঢাল একএে মিলিত হলে সংযোগস্থলে খাড়া কোণের সৃষ্টি হয়।এরুপ অবস্থায় এক ঢাল হতে অন্য ঢালে ক্রমান্বয়ে অবতরণ বা আরহণ করার জন্য বৃও বা অধিবৃত্তাকার চাপ আকৃতির বাকের মাধ্যমে গোলাকার কতে দেওয়া হয়।উল্লম্ব তলে এরুপ বাকই উল্লম্ব বাক।

Summit Curve

Objective –

To join 2 different grades of roads with smooth vertical curve. Four different conditions for formation summit curve which are shown below -


সপ্তম অধ্যায়


প্লান বা এলাইনমেন্ট সংস্থাপনের ধারণা

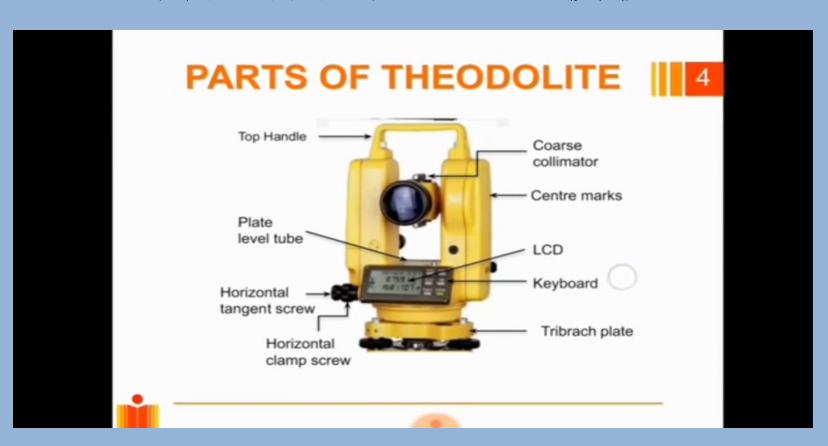
বাস্ত সংস্থাপনঃ নকশাকার ও স্থপতি প্রদত্ত ইমারত বা দালান কোঠার প্ল্যান বা নকশা হতে তাদের প্রদত্ত পরিমান ও তথ্যাদি অনুযায়ী এর ভিত্তি বা বুনিয়াদের খাদের মাটি খননের জন্য নির্ভুল ও সঠিকভাবে ভূমিতে ভিত্তির পরিসীমা চিহ্নিত করা বা দাগ দেওয়াকে বাস্ত সংস্থাপন বলে।বাস্ত সংস্থাপনে ইমারতের কেন্দ্রীয় রেখার অবস্থানও দেখানো হয়।

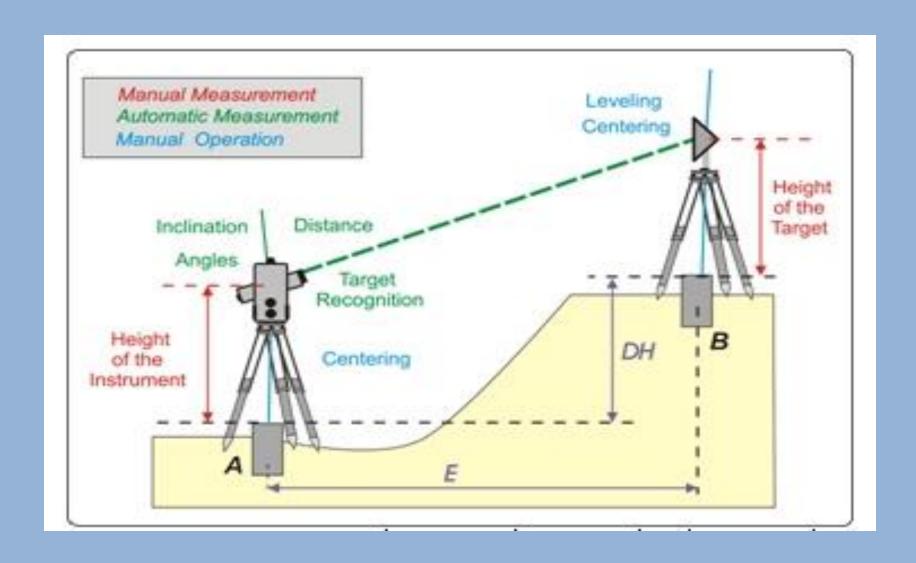
উদ্দেশ্যঃ গৃহ সংস্থাপনের উদ্দেশ্যগুলো নিচে উল্লেখ করা হলোঃ

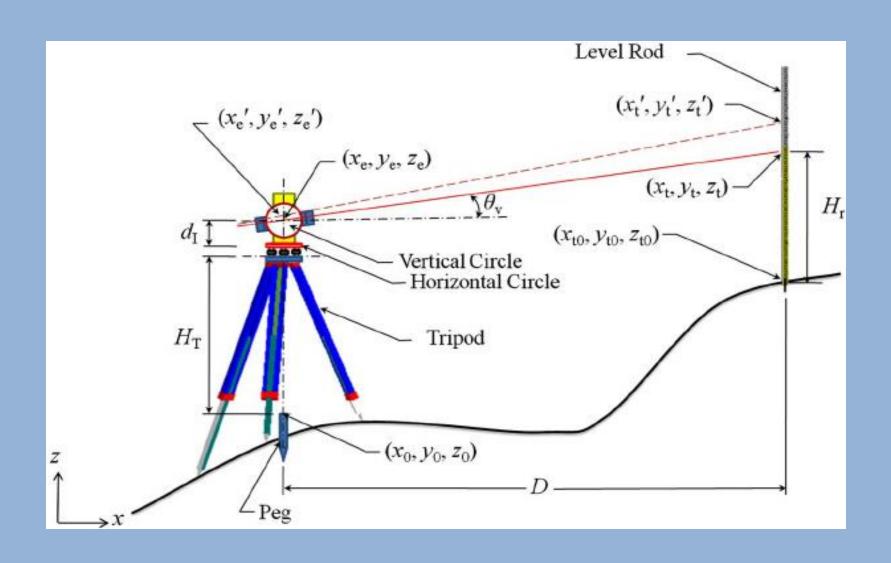
- কে)পরিকল্পনা অনুযায়ী গৃহের কক্ষগুলোর দৈর্ঘ্য প্রস্থসহ প্রত্যেকটি অংশের বুনিয়াদ বা ভিত্তির পরিসীমার সুবিধামতো অবস্থান নিশ্চিত করার জন্য।
- (খ)সম্পূর্ন জমিকে সর্বোচ্চ সুবিধাজনকভাবে ব্যবহারের জন্য।
- (গ)সাধারণ শ্রমিকের দ্বারা মাটি ভরাট বা খননে বিঘ্নতা মুক্তকরণের জন্য।
- (घ) নির্মাণ বিধি অনুসরনের জন্য।



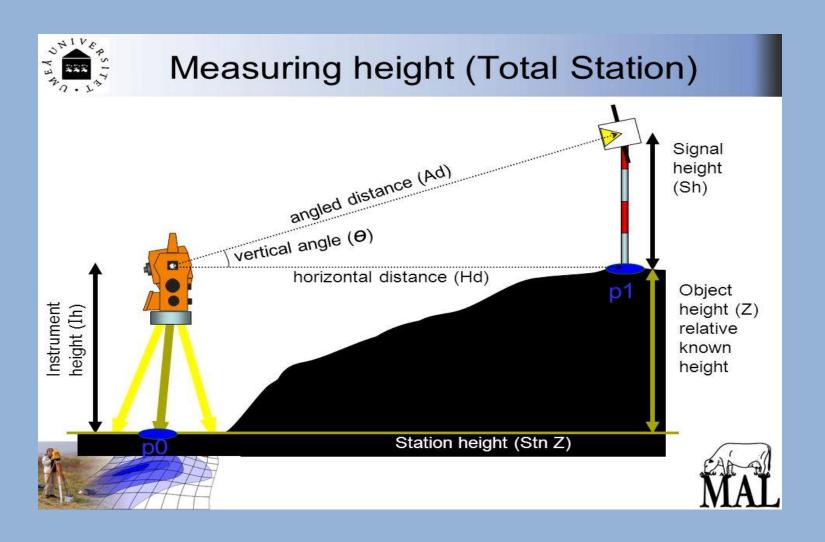
Step-by-step guide to setting out a building


Step 5 – repeat step 3


The profile at peg D showing alternative corner set out


অষ্টম অধ্যায়

টোটাল ষ্টেশন যশেত্রর পরিচিতি ও ব্যবহার



Measuring Vartical angule

Measuring height

সবাইকে ধন্যবাদ

৪র্থ অধ্যায়

স্টাফ পাঠ লিখন ও সমতলমিতি লঘুকরণ

8.১ লেভেলিং এ ব্যবহৃত কতিপয় শব্দ

পশ্চাৎ পাঠ:- লেভেল যন্ত্র যোজনার পর সর্ব প্রথম যে পাঠ গ্রহন করা হয় তাকে পশ্চাৎ পাঠ বলে।

অগ্রবর্তী পাঠ:- যোজনার সর্ব শেষে যে পাঠ গ্রহন করা হয় তাকে অগ্রবর্তী পাঠ বলে।

পরিবর্তন বিন্দু:- পূর্ববর্তী যোজনার শেষপাঠ ও পরবর্তী যোজনার প্রথম পাঠ যে বিন্দুতে গ্রহন করা হয় তাকে পরিবর্তন বিন্দু বলে।

স্টেশন বিন্দু:- যে সকল বিন্দুতে পাঠ গ্রহন করা হয় প্রত্যেকটি বিন্দুকে স্টেশন বিন্দু বলে।

৪.২ লেভেল বইয়ের প্রয়োজনীয়তা

- নিচে লেভেল বইয়ের প্রয়োজনীয়তা উল্লেখ করা হলো:
- ১.এটাতে দূরত্বের কলাম থাকায় তুলনামূলক দূরত্ব উদ্ধৃতির জন্য এটা খুবই প্রয়োজনীয়।
 ২.এটাতে বিভিন্ন উল্লেখযোগ্য ও প্রয়োজনীয় তথ্যাদি লেখার এবং বিশেষ ক্ষেত্রে মন্তব্যেও
 জন্য সুনির্দিষ্ট কলাম থাকায় কার্যক্ষেত্রের তথ্যাদি লিপিবদ্ধকরণের জন্য এর প্রয়োজনীয়তা
 অপরিসীম।
- আর.এল. হিসাব করার জন্য পদ্ধতি অনুযায়ী এতে সুনির্দিষ্ট ও সুবিন্যস্ত কলাম থাকায় নির্দিষ্ট পদ্ধতিতে সহজে আর.এল হিসাব করার জন্য প্রয়োজনীয়তা অনস্বীকার্য।
- 8.এটাতে প্রত্যেকটি স্টাফ পাঠের জন্য সুনির্দিষ্ট কলাম থাকায় সঠিক কলামে সঠিক পাঠ লিপিবদ্ধ করা যায়।
- ে. এ বইতে প্রতিটা পৃষ্টায় অনেক গুলো স্টেশনের আর.এল একই সারিতে এক নজরে দেখা যায় বিধায় সহজেই বিভিন্ন বিন্দুর উচ্চতা বা গভীরতা জানার জন্য এর প্রয়োজনীয়তা অত্যাধিক।
- ৬.মাটি কাটা বা ভরাটের ক্ষেত্রে পূর্ববর্তী ও পরবর্তী তুলনা করার জন্য খুবই প্রয়োজনীয়।

৪.২.১ লেভেল বইয়ের প্রকারভেদ

- লেভেল বই দুই প্রকার। যথা:
- ১। কলিমেশন বা যন্ত্রের উচ্চতা পদ্ধতির লেভেল বই
- ২। উচু নিচু পদ্ধতির লেভেল বই ।

কলিমেশন বা যন্ত্রের উচ্চতা পদ্ধতি

যোজনা	স্টাফ পাঠ			যন্ত্রের উচ্চতা	আর.এল	দুরত্ব	মন্তব্য
	পশ্চাৎ মধ্যবৰ্তী অগ্ৰবৰ্তী						

উচু-নিচু পদ্ধতি

যোজনা	স্টাফ পাঠ		উঁচু	নিচু	আর.এল	দূরত্ব	মন্তব্য	
	পশ্চাৎ	মধ্যবর্তী	অগ্রবর্তী					

৪.৩ সমতলমিতি লঘুকরণ

- যে প্রক্রিয়ায় মাঠে গৃহিত স্টাফ পাঠ হতে স্টেশন বিন্দু সমূহের
 আর. এল বা এলিভেশন নির্ণয় করা হয় তাকে সমতলমিতি
 লঘুকরণ বলে । দুই পদ্বতিতে এ লঘুকরণ করা হয় ।
 - ১। যন্ত্রের উচ্চতা বা কলিমেশন পদ্ধতি
 - ২। উচু-নিচু পদ্ধতি

8.8 লেভেল বইয়ের স্টাফ লিখন প্রক্রিয়া

- লেভেল বইতে স্টাফ পাঠ লেখার সময় নিম্নোক্ত বিষয়ের প্রতি
 লক্ষ্য রাখতে হয় :
- ১। যোজনার ক্রমানুযায়ী লেভেল বইয়ের নির্দিষ্ট কলামে পাঠ লিখতে হবে ।
 - ২। পৃষ্ঠার প্রথমে পশ্চাৎ ও শেষে অগ্রবর্তী পাঠ লিখতে হবে ।
- ৩। যদি পৃষ্ঠার শেষে মধ্যবর্তী পাঠ পরে তবে সেখানে মধ্যবর্তী ও অগ্রবর্তী উভয় কলামে এবং পরবর্তী পৃষ্ঠায় প্রথমে পশ্চাৎ ও মধ্যবর্তী উভয় কলামে উক্ত পাঠ লিখতে হবে।

সমস্যা-১: একটি অটোমেটিক লেভেলের সাহায্যে প্রাপ্ত স্টাফ পাঠগুলো ২.৭৫, ২.০১, ১.৩৭, ১.০০, ৩.৮৮, ৩.১৮, ২.০৬, ২.১৪ এবং ১.৬১ মিটার। স্টাফ পাঠ ৩০ মিটার অন্তর নেয়া হয়েছে। ৫ম এবং ৮ম পাঠ নেয়ার সময় যন্ত্রটি সরানো হয়েছিল। যদি ৮ম পাঠের R L ৫০ মিটার হয়, হবে কলিমেশন পদ্ধতিতে বিভিন্ন বিন্দুর R L নির্ণয় কর

৩য় যোজনার যন্ত্রের উচ্চতা= আর এল + ষ্টাফ পাঠ
= ৫০+ ২.১৪ =৫২.১৪
এই ভাবে প্রতিটি যোজনার যন্ত্রের উচ্চতা বের করে নিতে হবে
আর এল= যন্ত্রের উচ্চতা-স্টাফ পাঠ

সমাধান:

যোজনা	স্টাফ পাঠ			যন্ত্রের উচ্চতা	আর.এল	দুরত্ব	মন্তব্য
	প*চাৎ	মধ্যবৰ্তী	অগ্রবর্তী				
১ম	2.75			49.18	46.43	0	
		2.01			47.17	30	
		1.37			47.81	60	
২য়	3.88		1.00	52.06	48.18	90	CP
		3.18			48.88	120	
৩য়	2.14		2.06	52.14	50.00	150	CP
			1.61		50.53	180	
মোট	8.77		4.67				

নিরীক্ষা: $\Sigma BS - \Sigma FS = Last R L - 1^{st} R L$

$$\Rightarrow$$
 8.77 - 4.67 = 50.53 - 46.43

∴ 4.10 = 4.10 (নিরীক্ষিত)

সমস্যা-২: একটি প্রস্তাবিত রাস্তার কেন্দ্র রেখা বরাবর ৩০ মিটার পর পর নিচে লিখিত স্টাফ পাঠগুলো পাওয়া গেল: ১.৪১, ১.৪৪, ১.৮০, ১.৮৫, (১.৬৫, ০.৭৫), ২.২৫, ২.৫৪, ১.৬৫, (২.৮৫, ২.৪৫), ১.৪২, ১.৬০, ১.৮৬। ৮ম স্টাফ স্টেশন এর R L = ৪২m ধরে লেভেল বুক তৈরি করে অন্যান্য বিন্দুর R L নির্ণয় কর।

সমাধান:								
যোজনা		স্টাফ পাঠ		উঁচু	নিচু	আর.এল	দূরত্ব	মন্তব্য
	প*চাৎ	মধ্যবর্তী	অগ্রবর্তী	,	,		, ,	
১ম	1.41					44.03	0	
		1.44			0.03	44.00	30	
		1.80			0.36	43.64	60	
		1.85			0.05	43.59	90	
২য়	0.75		1.65	0.20		43.79	120	CP
		2.25			1.50	42.29	150	
		2.54			0.29	42.00	180	BM RL = 42m
		1.65		0.89		42.89	210	
৩ য়	2.45		2.85		1.20	41.69	240	CP
		1.42		1.03		42.72	270	
		1.60			0.18	42.54	300	
					0.26	42.28	330	
মোট	4.61		6.36	2.12	3.87			

নিরীক্ষা: $\Sigma BS - \Sigma F.S = \Sigma Rise - \Sigma Fall = Last R.L - 1^{st} R.L$

=4.61-6.36 =2.12-3.87 =42.28-44.03

= -1.75 = -1.75 Ok.

সমস্যা-৩: একটি প্রস্তাবিত রাস্তার কেন্দ্র রেখা বরাবর ২০ মিটার পর পর নিচে লিখিত স্টাফ পাঠগুলো পাওয়া গেল: ১.৩১, ১.২৪, ১.৭৫, (১.৫০, ০.৭৫), ২.০৬, ২.৩৪, ১.৪৫ (২.৫০, ১.৪০), ১.৪২, ১.২৬, ১.৩২. ৭ম পাঠের R L = ৩০ m ধরে লেভেল ফিল্ড বুক তৈরি করে অন্যান্য বিন্দুর R L নির্ণয় কর

সমাধান:								
দূরত্ব	স্টাফ পাঠ			উঁচু	নিচু	আর.এল	দূরত্ব	মন্তব্য
, ,	পশ্চাৎ	মধ্যবর্তী	অগ্রবর্তী					
১ম	1.31					31.78	0	
		1.24		0.07		31.85	20	
		1.75			0.51	31.34	40	
২য়	0.75		1.50	0.25		31.59	60	C.P
		2.06			1.31	30.28	80	
		2.34			0.28	30.00	100	BM RL = 30m
		1.45		0.89		30.89	120	
৩ য়	1.40		2.50		1.05	29.84	140	C.P
		1.42			0.02	29.82	160	
		1.26		0.16		29.98	180	
			1.32		0.06	29.92	200	
মোট	3.46		5.32	1.37	3.23			

নিরীক্ষা: $\Sigma BS - \Sigma F.S = \Sigma Rise - \Sigma Fall = Last R.L - 1^{st} R.L$ = 3.46 - 5.32 = 1.37 - 3.23 = 29.92 - 31.78= -1.86 = -1.86 Ok.

সমাপনী পরীক্ষায় গুরুত্বপূর্ণ প্রশ্ন সমুহ

- ১. সমতলমিতি লুঘুকরণ বলতে কী বোঝায়
- ২. পশ্চাৎ পাঠ, অগ্রবর্তী পাঠ, পরিবর্তন বিন্দু, স্টেশন বিন্দু বলতে কী বোঝায়
- ৩. উচুনিচু পদ্ধতির নিরীক্ষাগুলি কিকি?
- ৪. কলিমেশন ও উঁচু-নিচু পদ্ধতির তুলনা করর।?
- ৫. যন্ত্রের উচ্চতা বলতে কী বোঝায়?
- ৬. এই অধ্যায় থেকে অংক অবশ্যই প্রতি পরীক্ষায় থাকে।

Hydrography

- Branch of science that deals with the measurement of bodies of water
- Deals with the physical features of the navigable portion of the earth's surface and adjoining coastal areas.
- Sounding –measurement of depth below the water surface
- Applications of sounding:
 - Making nautical charts for safety of navigation
 - Development and engineering projects such as piers, dams and bridges
 - Scientific and academic studies

Horizontal Control and Vertical Control

Horizontal Control

- For large areas 2nd or 3rd order triangulation
- For smaller areas transit-tape traverse
- For small detached areas stadia, graphical, plane table methods
- For long narrow river traverse on one side
- For width >1km traverse on both sides

Vertical Control

 Tide gauges are used to establish the common datum before sounding is taken

Shoreline Survey

Shoreline

- Syn. to Coastline
- Line of contact between the land and the body of water
- USC&GS uses the high water line
- It consist of:
 - Determination or delineation of shorelines
 - Location of shore details and prominent features to which soundings may be connected
 - Determination of low and high water lines

Methods of Locating Sounding

From the shore

- Location by Cross-Rope
- Location by two angles from the shore
- Location by Range and One angle from the shore

From the boat

- Location by two angle from the boat
- Location by Range and One angle from the boat

From both the shore and the boat

- Location by One angle from the shore and from the boat
- Location by Range and Time Intervals of the boat
- Location by Intersecting Ranges
- Location by Tacheometric Observations

Sounding Lines

- Systems of Sounding Lines
 - Parallel straight lines -> open coasts
 - Radiating lines -> small bays and islets
 - Circular curves or arcs -> isolated shoal
- Spacing of Sounding Lines
 - Factors: the scale of the survey, depth of water, proximity to shore, character of submarine relief, importance of the region

Scale	Ordinary Spacing	Closest Spacing
1:10,000	50-60	25-30
1:20,000	100-125	50-60
1:40,000	200-250	100-125
1:80,000	400-500	200-250
1:120,000	600-750	300-375

Instruments used in Sounding

- The methods of determining water depth are differentiated by the instruments used .
 - Sounding Pole
 - The Leadline
 - Sounding Machines
 - Registering sheaves
 - Echo sounding Instrument or Fathometer

Echo Sounding

 Distance is measured by multiplying half the time(t) from the signal's outgoing pulse to its return by the speed of sound(S) in the water, which is approximately 1.5 kilometres per second.

$$D=0.5(t)*S$$

 It takes in to account the factors of temperature, pressure and salinity to calculate the actual sound speed.

Reduction of Sounding

- The reduced sounding are the reduced levels of the submarine surface in terms of the adopted datum
- A correction equal to the difference of level between the actual water level(gauge reading) and the datum(MLW/MLLW) is applied to the observed soundings.

Hydrographic Survey Team

- 1. Officer-in-charge/Chief-of-party
- 2. Left Angleman
- 3. Right Angleman
- 4. Recorder
- Fathometer attendant
- 6. Leadsman
- 7. Leadsman's assistant
- 8. Helmsman or Coxwain
- 9. Engineer
- 10. Additional general utility personnel

Hydrography and Cartography

- Cartography science and art of the production of maps and charts
- Nautical charts-> polyconic projection
- Instruments used in the preparation of Nautical Charts
 - 3-arm protractor
 - Hairspring divider
 - Spacing divider
 - Proportional divider
 - Meter Bar
 - Opisometer/Map measure
 - Beam Compass

The Nautical Chart

- A nautical chart is a graphic representation of a maritime area and adjacent coastal regions.
- Datums of a Nautical Chart
 - Horizontal Datum
 - Vertical Datum
 - Atlantic Ocean Mean Low Water
 - Pacific Ocean Mean Lower Low Water

Nautical Chart

- The Nautical chart or hydrographic map should contain the following information
 - Datum used
 - High, mean, low water lines
 - Soundings
 - Line of equal interpolated from the soundings called depth curves
 - Conventional symbols
 - All safety devices such as lighthouse, buoys etc.
 - Complete border information

Plotting of Soundings

- Soundings can be plotted in 3 ways
 - Mechanical Solution
 - By tracing paper
 - By Station Pointer
 - Graphical Solution
 - Method 1
 - Method 2
 - Analytical Solution

Other Essential in Hydrography

- The Sextant
 - An instrument used to measure the angle between any two visible objects.
- The Boat sheet/Hydrographic sheet
- The Wire drag
 - A device used to detect obstructions such as boulders and ledges. These obstructions should be plotted in the Navigational charts.

Common Terms used in Hydrography

Marginal continental features

- Bank
- Continental shelf
- Continental slope
- Insular shelf
- Insular slope

Deep Sea Depression

& Deep Sea Elevations

- Basin
- Deep
- Depression
- Depth
- Foredeep
- Trench
- Plateadu
- Ridge
- Seamount
- Swell

Common Terms used in Hydrography

Embayments

- Bay
- Bright
- Cove
- Harbor
- Inlet
- Gulf

Coastal Features

- Cape
- Coast
- High-water Line
- Island
- Islet
- Low-water line
- Point

Common Terms used in Hydrography

Streams

- Bayou
- Brook and Run
- Creek
- Lagoon
- River
- Slough
- Caldron
- Canyon
- Seavalley
- Valley

Submarine Elevations

- Bank
- Crest
- Dome Knoll
- Ledge
- Pinnacle
- Reef
- Shoal
- Spur

Thank You!