
Presented By Obydul Islam
Junior Instructor (Part-time),

Computer Science & Technology, MPI

 Microcontroller:

 In a microcomputer system, the device
created by integrating chips or devices,
data storage, and input/output ports with
the microprocessor used for control work,
to communicate with the external world
and receive signals, along with memory
input/output interfaces and other auxiliary
peripherals, is called a microcontroller.

 PIC is a Peripheral Interface Microcontroller
which was developed in the year 1993 by the
General Instruments Microcontrollers. It is
controlled by software and programmed in
such a way that it performs different tasks and
controls a generation line. PIC microcontrollers
are used in different new applications such as
smartphones, audio accessories, and advanced
medical devices.

My PIC tutorials and
projects use MikroC
compiler for firmware
development. But I don’t
think I ever posted
anything on its
installation and setup.
Today, I am going to
show how to install
MikroC Pro for PIC
(v4.60) on a Windows
PC. First of all, download
the zipped installation
file from here, unzip it
and run the setup
program.

Installation is
straightforwar
d. When you
first start the
MikroC
compiler, it
opens a LED
blinking
example
project. You
can close this
project by
clicking on
‘Close Project’
under Project
menu.

 package main
 import "fmt“
 func (x *Timer) tick(){
 x.id++ fmt.Println(x.id) }
 type Timer struct {
 value string id int }
 func main() {
 var x int fmt.Scanln(&x) t := Timer{"timer1", 0}
 for i:=0;i<x;i++ { t.tick() } }

UART Example for PIC16F887 CCS C code:
The code used in this example is shown below.
The function #use rs232(UART1, baud = 9600) is used to configure the
UART protocol. Here the hardware UART module is used. If the pins TX
and RX (RC6 and RC7) are used by an other application we can use
software UART. Software UART is generated by the compiler with the
same previous function. For example TX is mapped to pin RD0 and RX to
pin RD1:
#use rs232(xmit = PIN_D0, rcv = PIN_D0, baud = 9600)

 // CCS C UART example for PIC16F887 microcontroller

 #include <16F887.h>

 #fuses NOMCLR, INTRC_IO, NOBROWNOUT, NOLVP

 #use delay(clock = 8MHz)

 #use rs232(UART1, baud = 9600)

 const char message[] = "PIC16F887 microcontroller UART example" ;

 int8 i = 0, j;

 void main(){

 setup_oscillator(OSC_8MHZ); // Set internal oscillator to 8MHz

 delay_ms(2000); // Wait 2 seconds

 // Print text

 printf("Hello world!");

 // Print list of characters

 printf("\n\r"); // Start new line

 while(message[i] != '\0'){

CCSS C Code Example

 putc(message[i]); // Write character

 delay_ms(100); // Wait 100 ms

 i++; // Increment i

 }

 // Print numbers

 printf("\n\r"); // Start new line

 for(i = 0; i < 21; i++){

 printf("%u\n\r", i); // Print i and start new line

 delay_ms(500);

 }

 // Receive and send data via UART

 while(TRUE){

 if(kbhit()){ // If a character available

 j = getc(); // UART read

 putc(j); // Send it back

 }

 }
 }

 Understanding Sensors:
 Sensors are devices that detect and measure physical phenomena such as

temperature, pressure, light, motion, and more. They act as the eyes and ears of
an embedded system, providing valuable data for analysis and decision-
making. Common types of sensors include:

 Temperature sensors: Monitor changes in temperature, vital for applications
like climate control systems or industrial processes.

 Pressure sensors: Measure pressure variations, essential in automotive
applications, weather monitoring, and medical devices.

 Proximity sensors: Detect the presence or absence of objects, commonly used
in automation, robotics, and touch-sensitive interfaces.

 Accelerometer: Measure acceleration and tilt, found in devices like
smartphones, gaming consoles, and drones.

 Actuators: Bringing Actions to Life:
 Actuators are components that convert electrical signals from the embedded

system into physical actions. They enable the system to manipulate or control
various devices and mechanisms. Some commonly used actuators include:

 Motors: Convert electrical energy into mechanical motion, utilized in robotics,
industrial automation, and automotive systems.

 The true power of sensors and actuators lies in their seamless
integration within embedded systems. Micro controllers or
microprocessors serve as the brain of the system, orchestrating the
interaction between sensors, actuators, and other peripherals. The
steps involved in this integration include:

 Sensor data acquisition: Analog signals from sensors are converted
into digital data using analog-to-digital converters (ADCs).

 Signal processing: The acquired data is analyzed and processed using
algorithms to extract meaningful information.

 Actuator control: Based on the processed data, appropriate signals are
generated to control the actuators and trigger desired actions.

 Applications of Sensors and Actuators in Embedded Systems:
 Sensors and actuators find extensive applications in various domains,

including:

#include <stdio.h>
#include <stdlib.h>
#include <includes.h>
void main() { // Setting up PIC modules such as Timers, IOs OCs,Interrupts, ...
InitializeIO();
InitializeLEDs(); InitializeTimers();
while(1) { WaitOnBtn1();
Forward(4.0,70); Stop(1.0);
Backward(3.0,50); Stop(2);
Forward(3.0,40); Stop(1.0);
Backward(2.0,20); LEDsOFF(); } return; }
void InitializeIO()
{ TRISAbits.TRISA6 = 1;
TRISAbits.TRISA7 = 1;
TRISGbits.TRISG12 = 0;
TRISGbits.TRISB13 = 0;
LATGbits.LATB12 = 0;
LATGbits.LATB13 = 0; return; }
void InitializeLEDs(){
//code to initialize LEDS }

void InitializeTimers(){
// Initialize Timer1 T1CON = 0x0000;
// Set Timer1 Control to zeros T1CONbits.TCKPS=3;

// prescale by 256 T1CONbits.ON = 1;
// Turn on Timer PR1= 0xFFFF;
// Period of Timer1 to be full TMR1 = 0;
// Initialize Timer1 to zero
// Initialize Timer2 T2CON = 0; T2CONbits.TCKPS = 7;
// prescale by 256 T2CONbits.T32 = 1;
// use 32 bits timer T2CONbits.ON = 1;
PR2 = 0xFFFFFFFF; // Period is set for 32 bits TMR2 = 0; }
void WaitOnBtn1(){
// wait on Btn1 indefinitely while(PORTAbits.RA6 == 0);
// Turn On LED1 indicating it is Btn1 is Pushed LATBbits.LATB10 = 1;
return; }
void Forward(float Sec, int D){
int RunTime = (int)(Sec*39000);
// convert the total time to number of Tics TMR2 = 0; //LEDs LATGbits.LATG12
= 1;
// forward Direction LATBbits.LATB12 = 0; LATBbits.LATB13 = 0;
LATBbits.LATB11 = 1;
// Keep on firing the PWM as long as Run time is not elapsed while (TMR2 <
RunTime){ PWM(D); }
return; }
void PWM(int D){ TMR1 = 0; int Period = 400; while (TMR1< Period) { if (TMR1
< Period*D/100){ LATGbits.LATG13 = 1; } else{ LATGbits.LATG13 = 0; } }

 Arduino is an Italian open-source
hardware and software company, project, and user
community that designs and manufactures single-board
microcontrollers and microcontroller kits for building
digital devices. Its hardware products are licensed under
a CC BY-SA license, while the software is licensed under
the GNU Lesser General Public License (LGPL) or
the GNU General Public License (GPL),[1] permitting
the manufacture of Arduino boards and software
distribution by anyone. Arduino boards are available
commercially from the official website or through
authorized distributors.

 The Arduino project began in 2005 as a tool for students
at the Interaction Design Institute Ivrea, Italy,[3] aiming to
provide a low-cost and easy way for novices

You can use the Arduino
environment's built-in
serial monitor to
communicate with an
Arduino board. Click the
serial monitor button in
the toolbar and select
the same baud rate used
in the call to begin() .
Serial communication on
pins TX/RX uses TTL logic
levels (5V or 3.3V
depending on the
board).

AVR Trainer KIT
PRO

Get the latest
version from
the download
page. You can
choose between
the Installer (.exe)
and the Zip
packages. We
suggest you use
the first one that
installs directly
everything you
need to use the
Arduino Software
(IDE),

F1

Slide 30

F1 FUYAD, 8/6/2024

including the drivers.
With the Zip package
you need to install the
drivers manually. The
Zip file is also useful if
you want to create
a portable
installation.
When the download
finishes, proceed with
the installation and
please allow the driver
installation process
when you get a
warning from the
operating system.

