

- * বলের সাম্যাবস্থার শর্ত
- * বলের সাম্যাবস্থার নীতি
 - * ল্যামির সূত্র

বলের সাম্যাবস্থা

কোন বস্তুর উপর ক্রিয়ারত বলগুলোর লব্ধি শূন্য হলে এই অবস্থাকে বলের সাম্যাবস্থা বলে ।

বলের সাম্যাবস্থার শর্তঃ

- ১) বলগুলোর আনুভূমিক উপাংশের বীজগাণিতিক যোগফল শূন্য অর্থ্যাৎ $\sum\!H_F\!=\!0$
- ২) বলগুলোর উলম্ব উপাংশের বীজগাণিতিক যোগফল শূন্য অর্থ্যাৎ $\sum \! V_F \! = 0$
- ৩) বলের মোমেন্টের বীজগাণিতিক যোগফল শূন্য অর্থ্যাৎ $\sum \! M = 0$

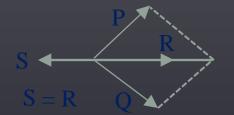
বলের সাম্যাবস্থার নীতি

বলের সাম্যাবস্থা তিনটি নীতিমালা অনুসরণ করে

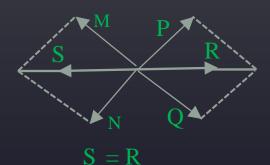
১) দ্বি-বল নীতিঃ দুইটি বল সাম্যাবস্থায় থাকবে যদি বল দুটির মান পরস্পর সমান ও বিপরীতমুখী হয় এবং একই লাইনে ক্রিয়াশীল হয়।

$$P = O$$
 Q

২) ত্রি-বল নীতিঃ তিনটি বল সাম্যাবস্থায় থাকবে যদি যে কোন দুটি বলের লব্ধি তৃত্বীয় বলের সমান ও বিপরীতমুখী হয় এবং একই লাইনে কাজ করে ।



৩) চার-বল নীতিঃ চারটি বল সাম্যাবস্থায় থাকবে যদি যে কোন দুটি বলের লব্ধি অপর দুটি বলের লব্ধির সমান ও বিপরীতমুখী হয় এবং একই লাইনে কাজ করে ।



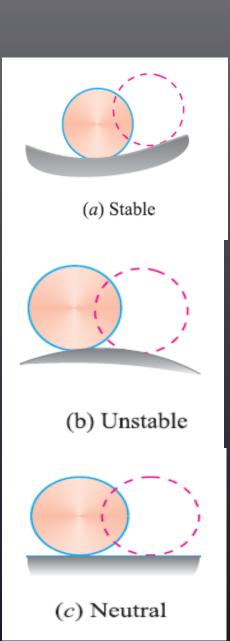
বলের সাম্যাবস্থার প্রকারভেদঃ

বলের সাম্যাবস্থা তিন প্রকার । যথাঃ

১) স্থায়ী সাম্যাবস্থাঃ কোন বস্তু স্থির অবস্থান হতে বিচ্যুতির পর পূর্ব অবস্থানে ফিরে আসলে তাকে স্থায়ী সাম্যাবস্থা বলে ।

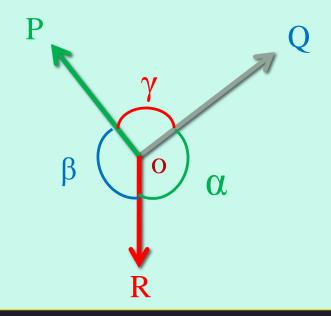
২) অস্থায়ী সাম্যাবস্থাঃ কোন বস্তু স্থির অবস্থান হতে বিচ্যুতির পর পূর্ব অবস্থানে ফিরে না এসে আরো দূরে গেলে তাকে অস্থায়ী সাম্যাবস্থা বলে

৩) নিরপেক্ষ সাম্যাবস্থাঃ কোন বস্তু স্থির অবস্থান হতে বিচ্যুতির পর নতুন অবস্থানে স্থির থাকলে তাকে নিরপেক্ষ সাম্যাবস্থা বলে ।



ল্যামির সূত্র

'যদি তিনটি বল একই বিন্দুতে ক্রিয়া করে এবং সাম্যাবস্থায় থাকে তবে প্রতিটি বল অপর দুইটি বলের অন্তর্ভূক্ত কোণের সাইন এর সমানুপাতিক।"

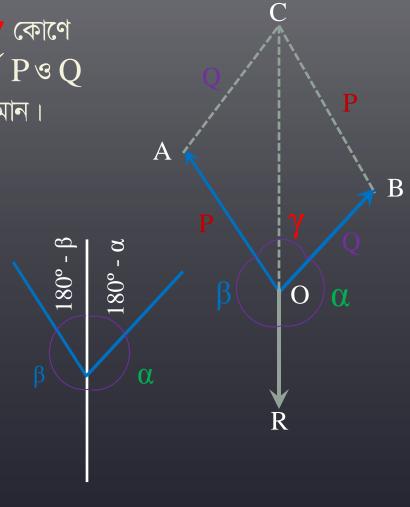


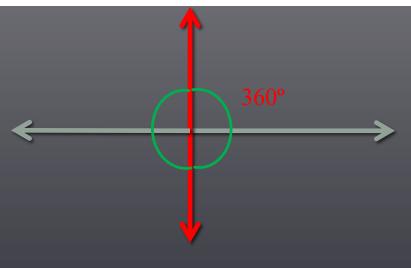
অর্থ্যাৎ
$$\frac{P}{Sin\alpha} = \frac{Q}{Sin\beta} = \frac{R}{Sin\gamma}$$

মনে করি, P, Q ও R সমতলীয় বল তিনটি O বিন্দুতে । ও γ কোণে সাম্যাবস্থায় ক্রিয়ারিত। OACB সামান্তরিক অংকন করি । OC কর্ণ P ও Q বলের লব্ধির মান নির্দেশ করে । R বলের ক্রিয়ারেখা OC লব্ধি বলের সমান।

OA=BC= P
$$\triangleleft \triangleleft \triangleleft \triangleleft \triangleleft \triangleleft \triangleleft \square$$
 OB=AC=Q

 $\angle AOC=180^{\circ} - \beta$
 $\angle ACO = \angle BOC = 180^{\circ} - \alpha$
 $\angle AOC + \angle ACO + \angle CAO = 180^{\circ}$
 $\therefore \angle CAO = 180^{\circ} - (\angle AOC + \angle ACO)$
 $= 180^{\circ} - [(180^{\circ} - \beta) + (180^{\circ} - \alpha)]$
 $= 180^{\circ} - 180^{\circ} + \beta - 180^{\circ} + \alpha$
 $= \alpha + \beta - 180^{\circ}$





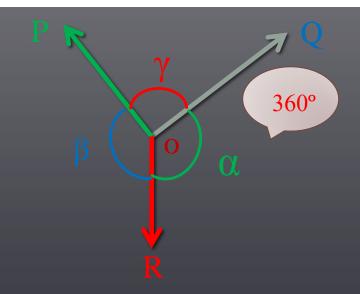
$$\alpha + \beta + \gamma = 360^{\circ}$$

$$\Rightarrow \alpha + \beta + \gamma$$
- 180 ° = 360°- 180 °

$$\Rightarrow \alpha + \beta + \gamma - 180^{\circ} = 180^{\circ}$$

$$\Rightarrow \alpha + \beta - 180^{\circ} = 180^{\circ} - \gamma$$

∴
$$\angle$$
CAO = 180 ° $-\gamma$



[উভয় পক্ষ হতে 180° বিয়োগ করে]

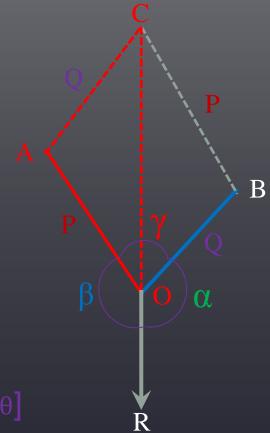
$$[\angle CAO = (\alpha + \beta - 180^{\circ})]$$

ত্রিভূজ AOC তে সাইন সূত্র প্রয়োগ করে পাই,

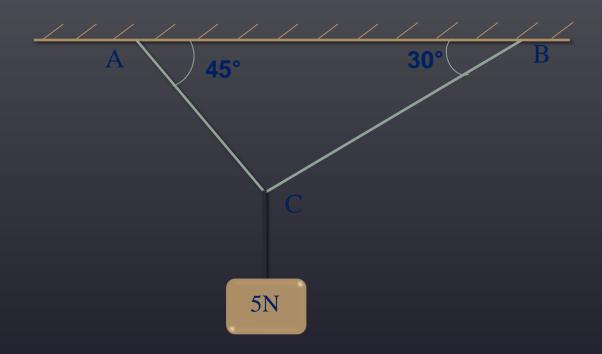
$$\frac{OA}{Sin \angle ACO} = \frac{AC}{Sin \angle AOC} = \frac{OC}{Sin \angle CAO}$$

$$=>\frac{OA}{Sin(180^{\circ}-\alpha)}=\frac{AC}{Sin(180^{\circ}-\beta)}=\frac{OC}{Sin(180^{\circ}-\gamma)}$$

$$\therefore \frac{P}{\sin \alpha} = \frac{Q}{\sin \beta} = \frac{R}{\sin \gamma}$$
 (প্রমাণিত) ।
$$[\sin (180^\circ - \theta) = \sin \theta]$$



চিত্রে $5 \mathrm{N}$ ওজনের একটি বক্স $A\mathrm{C}$ ও BC তার দিয়ে ঝুলানো আছে । তার দুটির টান নির্ণয় কর ।



F.B.D

ল্যামির সূত্র প্রয়োগ করে পাই,

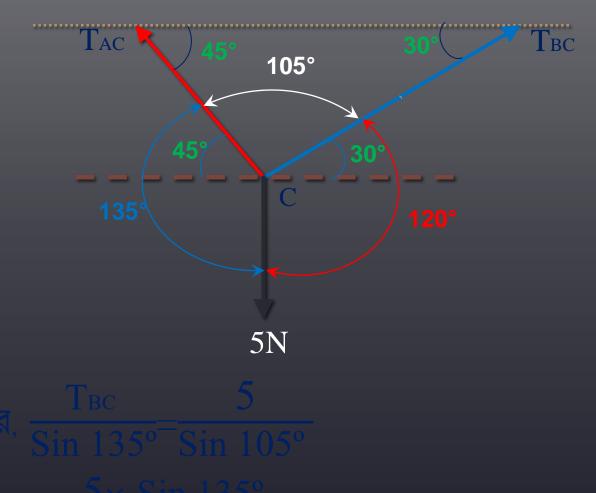
$$\frac{P}{\sin\alpha} = \frac{Q}{\sin\beta} = \frac{R}{\sin\gamma}$$

$$=> \frac{T_{AC}}{\sin 120^{\circ}} = \frac{T_{BC}}{\sin 135^{\circ}} = \frac{5}{\sin 105^{\circ}}$$

$$=> \frac{T_{AC}}{\sin 120^{\circ}} = \frac{5}{\sin 105^{\circ}}$$

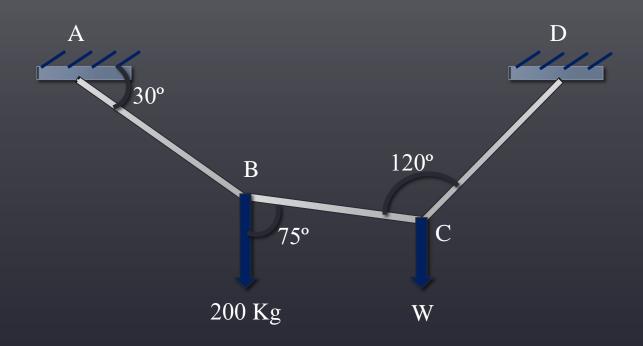
$$=>T_{AC}=\frac{5\times \sin 120^{\circ}}{\sin 105^{\circ}}$$

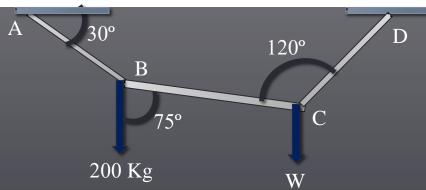
$$\therefore$$
 TAC = 4.48 N



TBC = 3.66 N

চিত্রে বল ব্যবস্থাটি সাম্যাবস্থায় আছে। $\overline{\mathrm{AB,BC}}$ এবং $\overline{\mathrm{CD}}$ রশি বরাবর বলের পরিমাণ এবং $\overline{\mathrm{W}}$ নির্ণয় কর





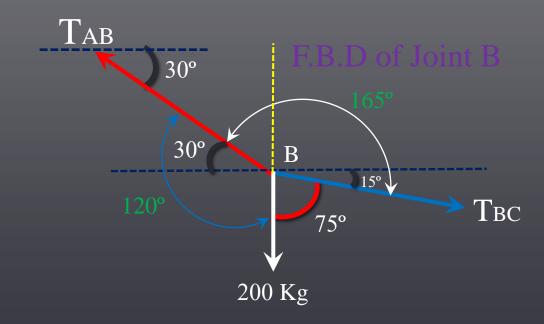
B বিন্দুতে ল্যামির সূত্র প্রয়োগ করে পাই,

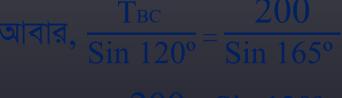
$$\frac{T_{AB}}{\sin 75^{\circ}} = \frac{T_{BC}}{\sin 120^{\circ}} = \frac{200}{\sin 165^{\circ}}$$

$$=>\frac{T_{AB}}{\sin 75^{\circ}}=\frac{200}{\sin 165^{\circ}}$$

$$=>T_{AB}=\frac{200\times\sin 75^{\circ}}{\sin 165^{\circ}}$$

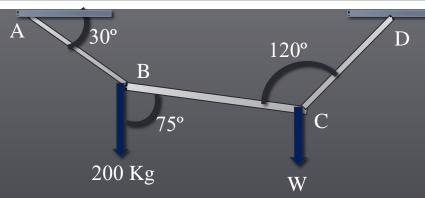
$$=>T_{AB}=746.41 \text{ Kg}$$





 $=> \text{TBC} = \frac{200 \times \text{Sin } 120^{\circ}}{\text{Sin } 165^{\circ}}$

$$=> T_{BC} = 669.21 \text{ Kg}$$



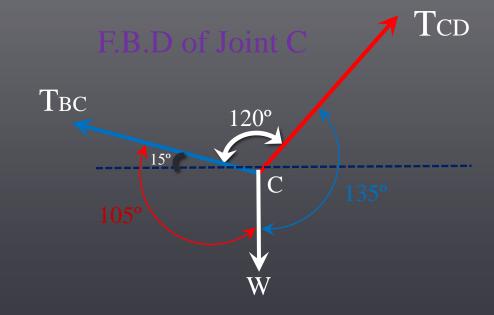
C বিন্দুতে ল্যামির সূত্র প্রয়োগ করে পাই,

$$\frac{T_{BC}}{\sin 135^{\circ}} = \frac{T_{CD}}{\sin 105^{\circ}} = \frac{W}{\sin 120^{\circ}}$$

$$= > \frac{669.21}{\sin 135^{\circ}} = \frac{T_{CD}}{\sin 105^{\circ}} = \frac{W}{\sin 120^{\circ}}$$

$$=> T_{CD} = \frac{669.21 \times \sin 105^{\circ}}{\sin 135^{\circ}}$$

$$\therefore \text{ TCD} = 914.15 \text{ Kg}$$



আবার,
$$\frac{W}{\sin 120^{\circ}} = \frac{669.21}{\sin 135^{\circ}}$$

$$=> W = \frac{669.21 \times Sin \ 120^{\circ}}{Sin \ 135^{\circ}}$$

$$\therefore W = 819.61 \text{ Kg}$$

আলোচনা থেকে.....

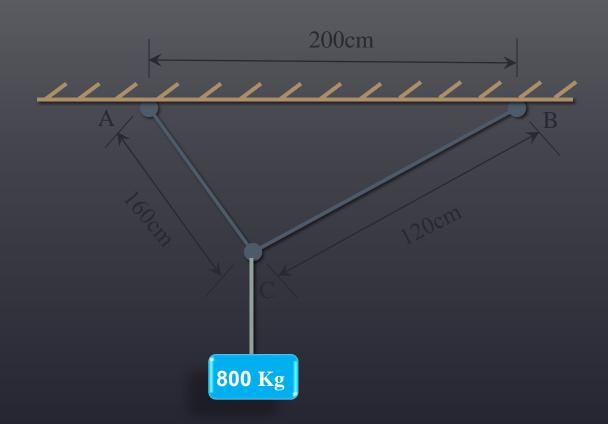
বলের সাম্যাবস্থা

- * বলের সাম্যাবস্থার শর্ত
- * বলের সাম্যাবস্থার নীতি
- * ল্যামির সূত্র

আলোচ্য বিষয়

্রাবলের সাম্যাবস্থার ল্যামির সূত্র সম্পর্কিত গাণিতিক সমস্যার সমাধান

চিত্রানুযায়ী AC ও BC রশির টান নির্ণয় কর।

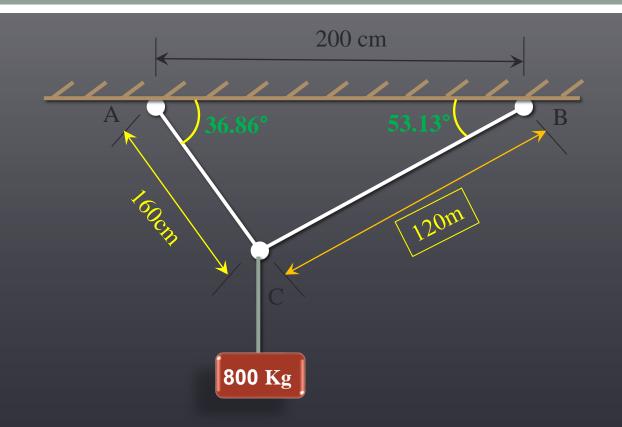


$$\cos A = \frac{AB^2 + AC^2 - BC^2}{2.AB.AC}$$

$$\Rightarrow \cos A = \frac{200^2 + 160^2 - 120^2}{2.200.160}$$

$$\Rightarrow$$
 A = Cos⁻¹(0.8)

$$\Rightarrow$$
A = 36.86°



$$\cos B = \frac{AB^2 + BC^2 - AC^2}{2.AB.BC} \Rightarrow \cos B = \frac{200^2 + 120^2 - 160^2}{2.200.120} = 0.6$$
$$\Rightarrow B = \cos^{-1} 0.6 = 53.13^{\circ}$$

F.B.D

ল্যামির সূত্র প্রয়োগ করে পাই,

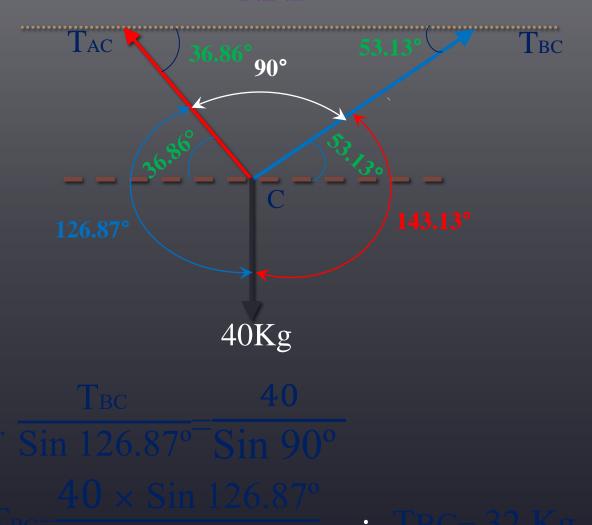
$$\frac{P}{\sin\alpha} = \frac{Q}{\sin\beta} = \frac{R}{\sin\gamma}$$

$$=> \frac{T_{AC}}{\sin 143.13^{\circ}} = \frac{T_{BC}}{\sin 126.87^{\circ}} = \frac{40}{\sin 90^{\circ}}$$

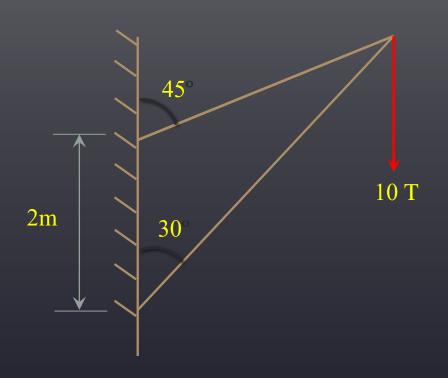
$$=> \frac{T_{AC}}{\sin 143.13^{\circ}} = \frac{40}{\sin 90^{\circ}}$$

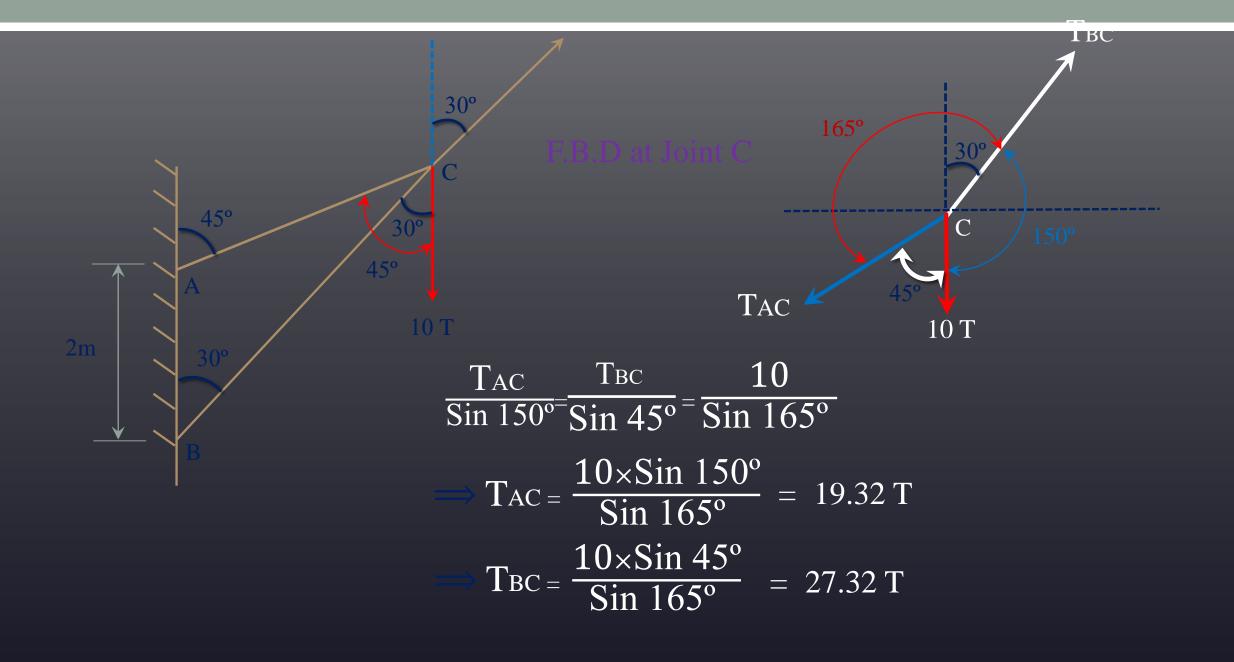
$$=>T_{AC} = \frac{40 \times Sin \ 143.13^{\circ}}{Sin \ 90^{\circ}}$$

$$\therefore$$
 TAC = 24 Kg

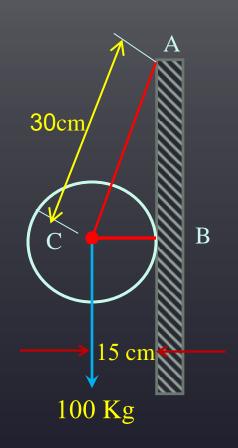


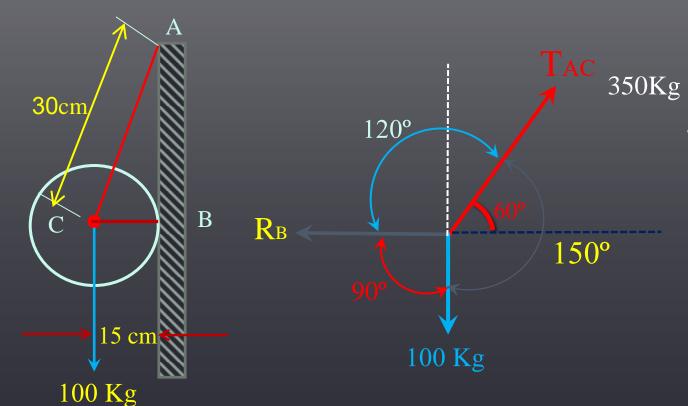
একটি জিব ক্রেনের সাহায্যে 10 টন ওজন উত্তোলন করতে ক্রেনের 2m লম্বা খুঁটির সাথে জিব এবং টাই রড নিচের চিত্রানুযায়ী যথাক্রমে 30° এবং 40° কোণে অবস্থিত হলে জিব এবং টাই রডের বলের পরিমাণ নির্ণয় কর ।





100 Kg ওজন বিশিষ্ট 15 cm ব্যাসাধের একটি বৃত্তাকার রোলার 30cm লম্বা রশির সাহায্যে একটি খাড়া দেয়ালের সাথে ঝুলানো আছে । AC রশির টান এবং রোলার ও দেয়ালের স্পর্শ বিন্দু B-তে প্রতিক্রিয়া বল নির্ণয় কর ।





$$\cos \theta = \frac{2}{2}$$
 তিহুজ = $\frac{15}{30}$

$$\Rightarrow \theta = \cos^{-1}\frac{15}{30} = 60^{\circ}$$

$$\frac{T_{AC}}{Sin \ 90^o} = \frac{R_B}{Sin \ 150^o} = \frac{100}{Sin \ 120^o}$$

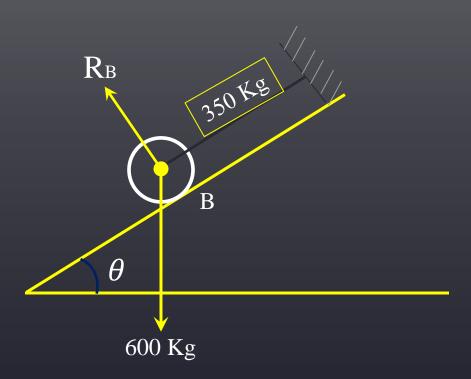
$$\Longrightarrow \text{TAC} = \frac{100 \times \sin 90^{\circ}}{\sin 120^{\circ}}$$

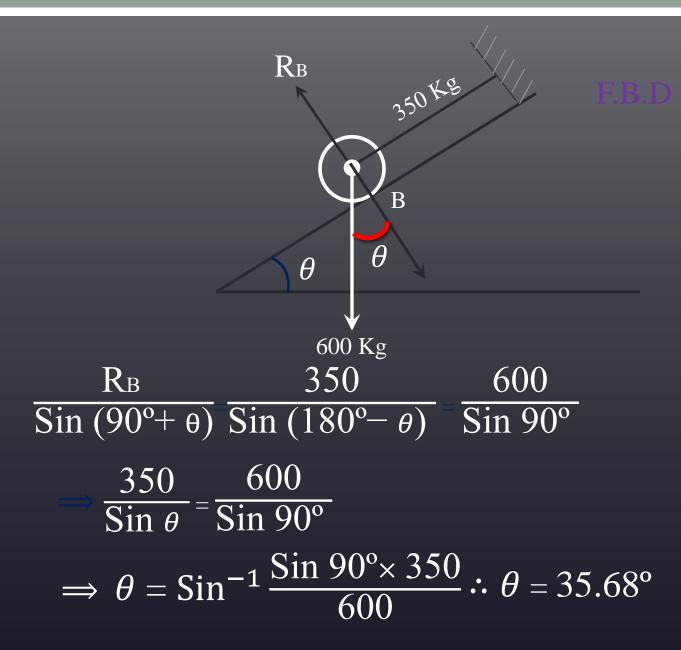
$$\therefore \text{TAC} = 115.47 \text{ Kg}$$

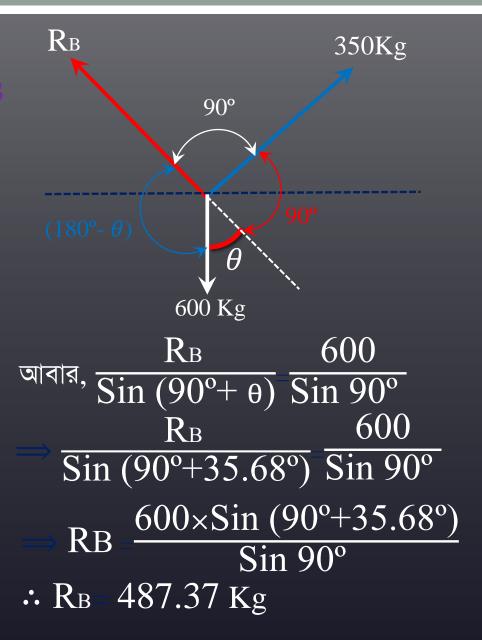
$$\implies RB = \frac{100 \times \sin 150^{\circ}}{\sin 120^{\circ}}$$

$$: R_B = 57.74 \text{ Kg}$$

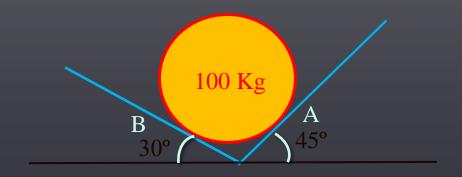
চিত্রে $600~{
m Kg}$ ওজনেরএকটিগোলকএকটিহেলানোতলেরশিরসাহায্যেবাঁধাআছে । রশিতেটানাবলেরমান $350{
m Kg}$ হলেheta ও ${
m B}$ বিন্দুতেপ্রতিক্রিয়াবলেরমানকত ?

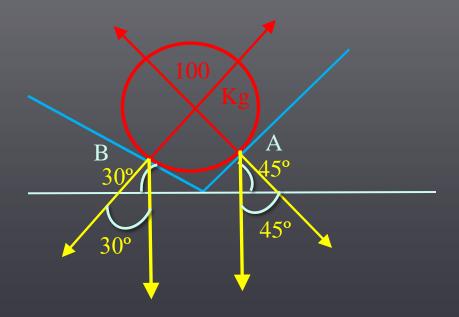






চিত্রানুযায়ী Aও B বিন্দুতে প্রতিক্রিয়া বল নির্ণয় কর।

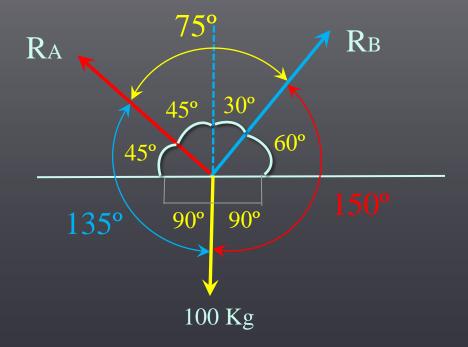




$$\frac{R_{A}}{\sin 150^{o}} = \frac{R_{B}}{\sin 135^{o}} = \frac{100}{\sin 75^{o}}$$

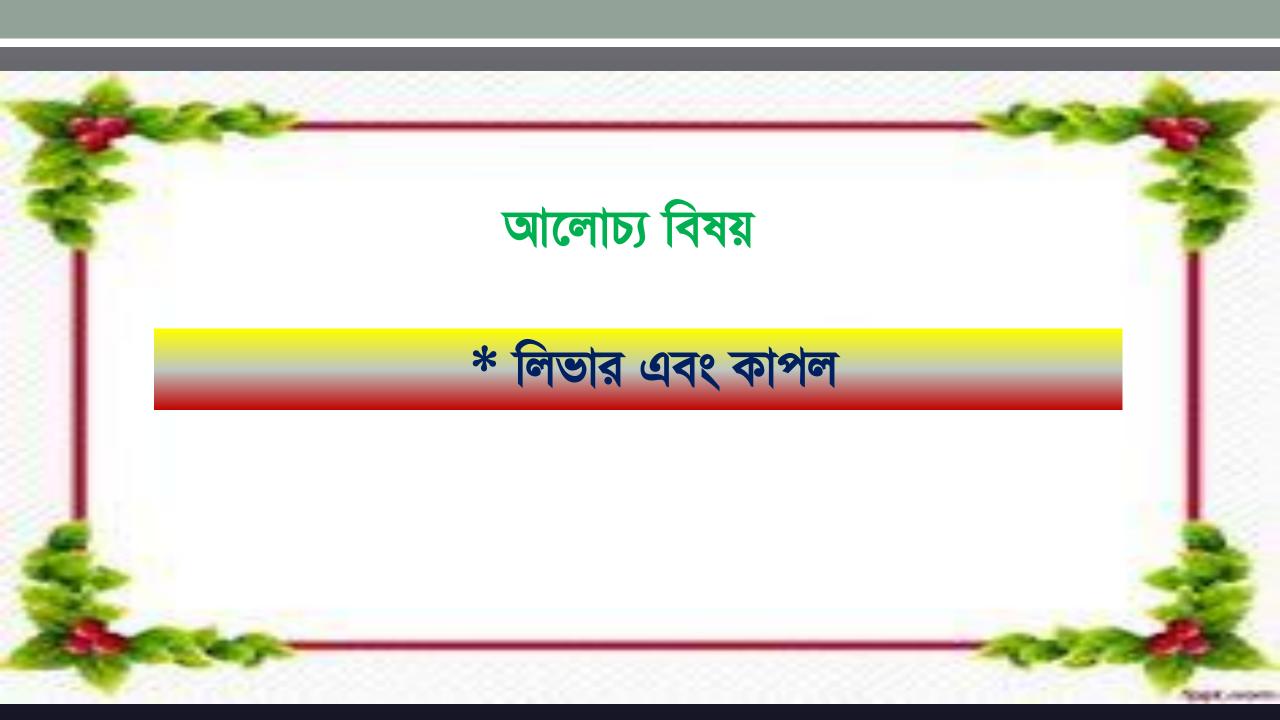
$$\implies RA = \frac{100 \times \sin 150^{\circ}}{\sin 75^{\circ}}$$

$$\therefore$$
 RA= 73.21 Kg



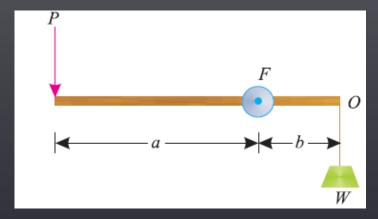
$$\implies R_B = \frac{100 \times \sin 135^\circ}{\sin 75^\circ}$$

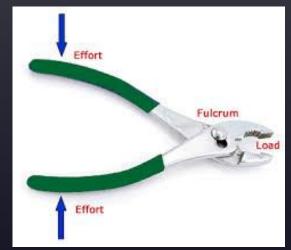
$$: R_B = 51.76 \text{ Kg}$$



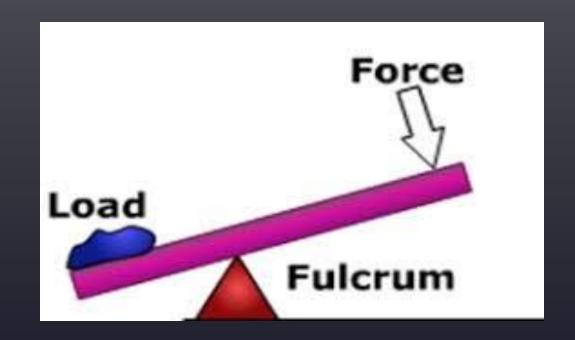
লিভার

সোজা বা বাঁকা যেকোন দৃঢ় দন্তকে এক প্রান্তে অথবা সুবিধামত অংশে কজা দারা আটকালে একে লিভার বলে ।





যে বিন্দুকে কেন্দ্র করে লিভারটি আবর্তিত হতে পারে তাকে ফালক্রাম (Fulcrum) বলে । লিভারের যে প্রান্তে বল প্রয়োগ করা হয় তাকে বল বাহু এবং যে প্রান্ত ভার উত্তোলন করে তাকে ভার বাহু বলে ।

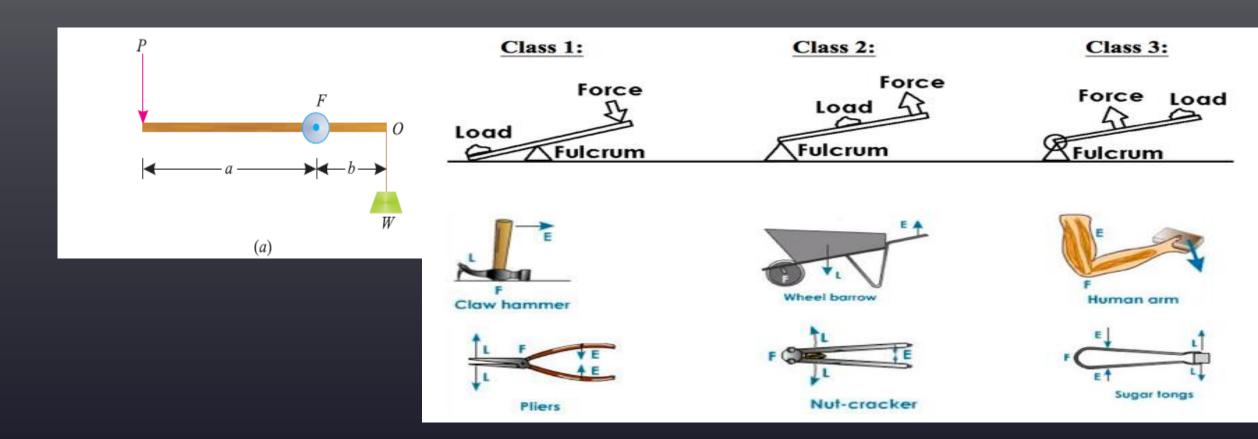


লিভার দুই প্রকার। যথাঃ

- ১) সরল লিভার
- ২) যৌগিক লিভার

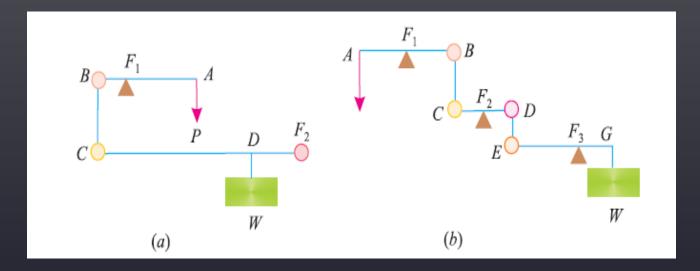
১) সরল লিভারঃ

সোজা বা বাঁকা একটি মাত্র দন্ড দারা গঠিত লিভারকে সরল লিভার বলে



২) যৌগিক লিভারঃ

্রতাধিক সরল লিভারের সমন্বয়ে যে লিভার গঠিত হয় তাকে যৌগিক লিভার বলে ।



লিভারের নীতি

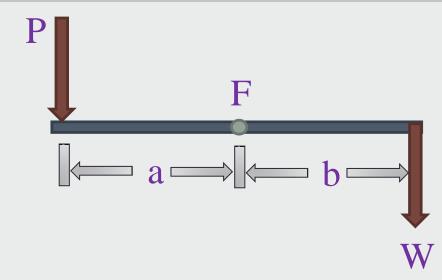
বল \times বল বাহুর দৈর্ঘ্য = ভার \times ভার বাহুর দৈর্ঘ্য

চিত্রের সরল লিভারের প্রযুক্ত বল = P এবং লোড = W প্রযুক্ত বলের বাহু = a এবং লোডের বাহু = b ফালক্রাম F বিন্দুতে মোমেন্ট নিয়ে,

বল \times বল বাহুর দৈর্ঘ্য = ভার \times ভার বাহুর দৈর্ঘ্য

$$=> P . a = W . b$$

$$\Rightarrow \frac{W}{P} = \frac{a}{b}$$

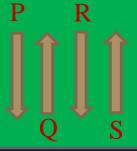


এখানে ,
$$\frac{\text{লোড}}{\underline{\text{সুযুক্ত বল}}} = \frac{W}{\underline{P_{\text{M}}}}$$
কেলিভারের বাছ $\frac{a}{b}$ কেলিভারেজ বলে । লোডের বাছ

সমান্তরাল বল দুই প্রকার । যথাঃ

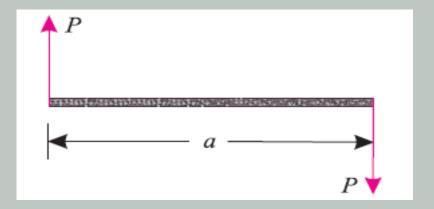
1) সদৃশ সমান্তরাল বলঃ যে সকল সমান্তরাল বলের লাইন অব অ্যাকশন একই দিকে তাকে সদৃশ সমান্তরাল বল বলে ।

2) অসদৃশ সমান্তরাল বলঃ যে সকল সমান্তরাল বলের লাইন অব অ্যাকশন একই দিকে নয় তাকে অসদৃশ সমান্তরাল বল বলে ।



কাপল

কোন বস্তুর উপর যদি দুটি সমান্তরাল, সমমানের ও বিপরীতমুখী বল একটি নির্দিষ্ট দূরত্বে পৃথকভাবে ক্রিয়া করে তাকে কাপল বলে ।

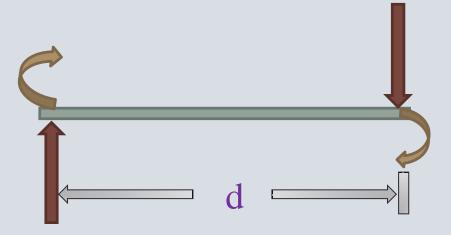


কাপল দুই ধরণের।

- 1. Clockwise Couple
- 2. Anti-Clockwise Couple

Clockwise Couple

যে কাপল কোন বস্তুকে ঘড়ির কাঁটার দিকে ঘুরায় তাকে Clockwise Couple বলে ।

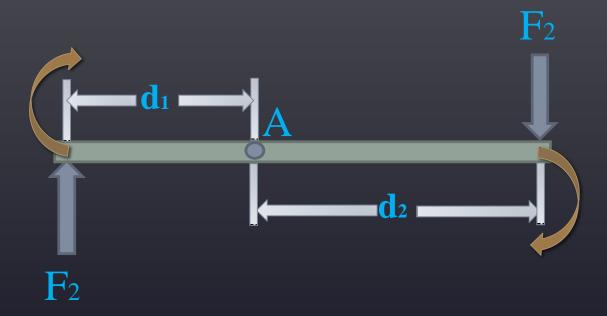


Anti-Clockwise Couple

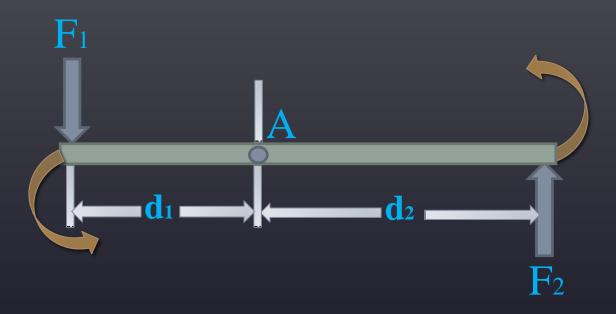
যে কাপল কোন বস্তুকে ঘড়ির কাঁটার বিপরীত দিকে ঘুরায় তাকে Anti-Clockwise Couple

বলে ।

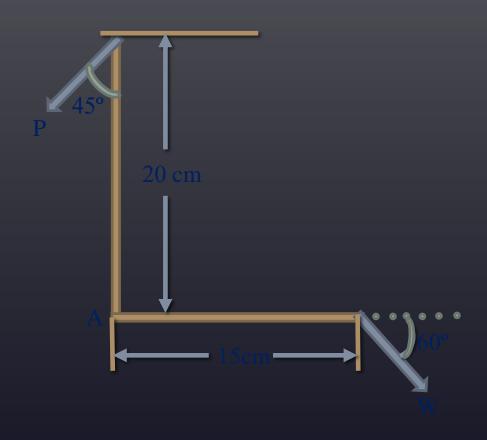
Clock-wise:



Anticlock-wise:



নিচের চিত্রের লিভারের W=100Kg ওজনের জন্য P বলের মান নির্ণয় কর ।



A বিন্দুতে মোমেন্ট নিয়ে পাই,

$$+\sum MA = 0$$

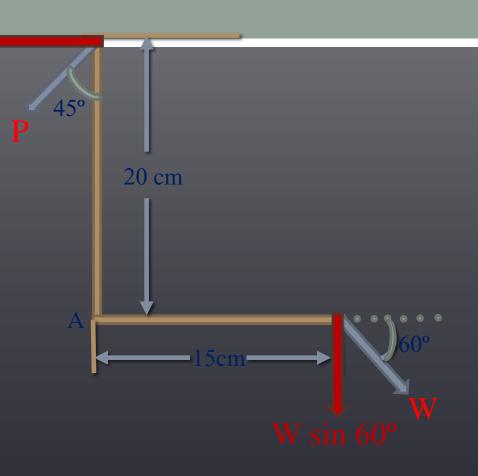
$$\Rightarrow$$
 - P sin 45° × 20 + W sin 60° × 15 = 0

P sin 45°

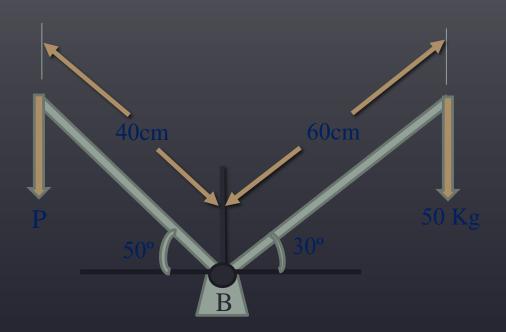
$$\Rightarrow$$
 100 sin 60° × 15 = P sin 45° × 20

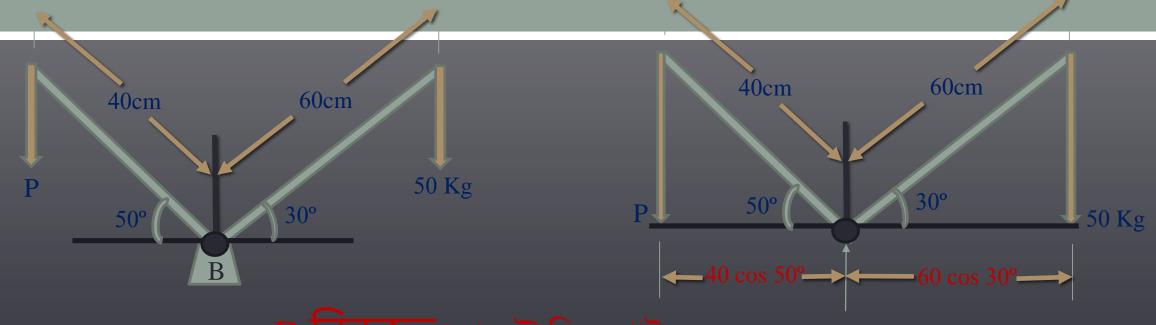
$$\Rightarrow P = \frac{100 \sin 60^{\circ} \times 15}{\sin 45^{\circ} \times 20}$$

$$\Rightarrow$$
 P = 91.85 Kg (Ans.)



চিত্রানুযায়ী একটি বেল ক্র্যাংক লিভার সাম্যাবস্থায় রয়েছে। B বিন্দুতে যদি লিভারটি পিনযুক্ত থাকে তবে P বলের মান নির্ণয় কর ।





B বিন্দুতে মোমেন্ট নিয়ে পাই,

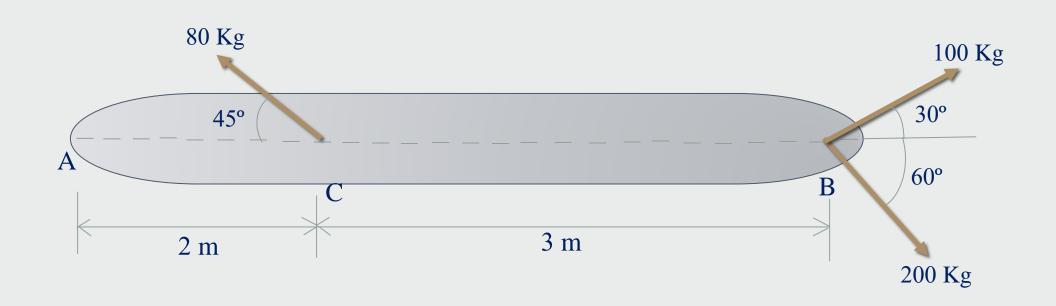
$$+\sum MB = 0$$

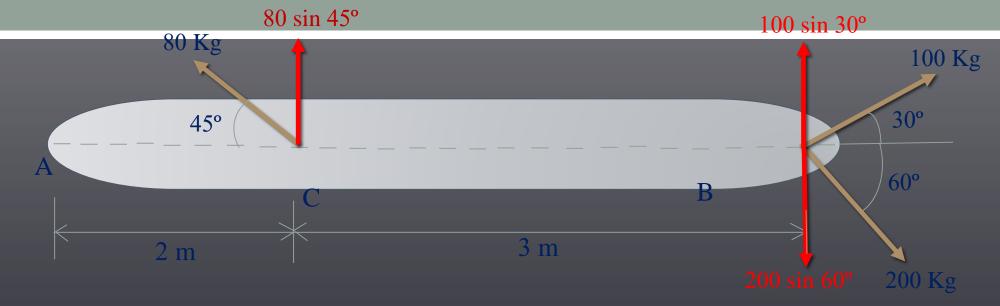
$$\Rightarrow$$
 - P × 40 cos 50° + 50 × 60 cos 30° = 0

$$\Rightarrow P = \frac{50 \times 60 \cos 30^{\circ}}{40 \cos 50^{\circ}}$$

$$\Rightarrow$$
 P = 101.05 Kg (Ans.)

চিত্রে AB একটি লিভারে বল প্রয়োগের দিক ও পরিমাণ দেয়া আছে।লিভারের A বিন্দুতে মোমেন্ট নির্ণয় কর ।





A বিন্দুতে মোমেন্ট নিয়ে পাই,

$$+ \sum MA = -80 \sin 45^{\circ} \times 2 - 100 \sin 30^{\circ} \times 5 + 200 \sin 60^{\circ} \times 5$$

= 502.88 Kg-m (Ans.)

আলোচনা থেকে.....

- লিভার
- প্রকারভেদ
- কাপল
- •প্রকারভেদ
- গাণিতিক সমস্যা

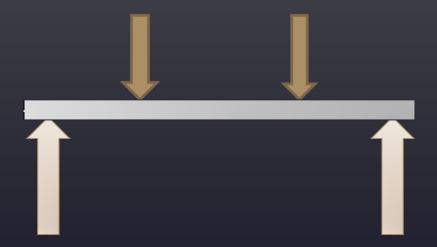
বীমের সাপোর্ট প্রতিক্রিয়া ও বলের মোমেন্ট

আলোচনা থেকে

- * বীম এবং বীমের সাপোর্ট প্রতিক্রিয়া সম্পর্কে জ্ঞান লাভ করা যাবে
- * মোমেন্টের মাধ্যমে প্রতিক্রিয়া বল নির্ণয় করতে পারা যাবে ।

বীম

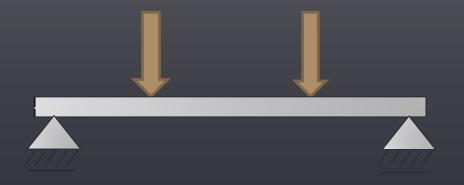
বীম এক প্রকার আনুভূমিক কাঠামো যা এক বা একাধিক খুঁটি, পিলার ,কলাম,দেওয়াল ইত্যাদির উপর অবস্থান করে এবং এর উপর আরোপিত লোডকে সাপোর্টে স্থানান্তরিত করে



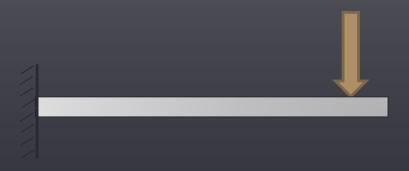
বীমের প্রকারভেদ

- 1) সাধারণভাবে স্থাপিত বীম (Simply Supported Beam)
- 2) ক্যান্টিলিভার বীম (Cantilever Beam)
- 3) বুলন্ত বীম (Overhanging Beam)
- 4) আবদ্ধ বীম (Fixed Beam)
- 5) ধারাবাহিক বীম (Continuos Beam)

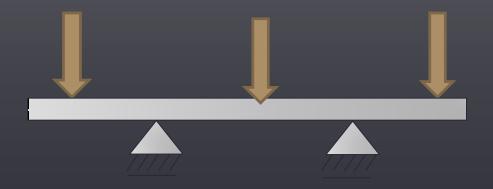
সাধারণভাবে স্থাপিত বীম (Simply Supported Beam)



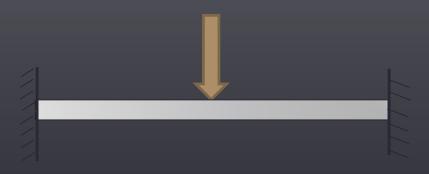
ক্যান্টিলিভার বীম (Cantilever Beam)



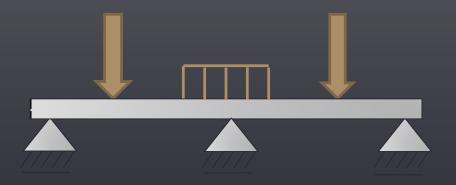
ঝুলন্ত বীম (Overhanging Beam)



আবদ্ধ বীম (Fixed Beam)



ধারাবাহিক বীম (Continuos Beam)



বীমের সাপোর্ট

- ১) সাধারণভাবে স্থাপিত সাপোর্ট (Simple Support)
- ২) হিঞ্জড বা কজা সাপোর্ট (Hinged Support)
- ৩) রোলার সাপোর্ট (Roller Support)

বীমের সাপোর্ট প্রতিক্রিয়া

১) স্ট্যাটিক্যালি ডিটারমিনেট বীম (Statically Determinate Beam)

উদাহরণঃ সাধারণভাবে স্থাপিত বীম (Simply Supported Beam)

ক্যান্টিলিভার বীম (Cantilever Beam)

ঝুলন্ত বীম (Overhanging Beam)

২) স্ট্যাটিক্যালি ইনডিটারমিনেট বীম (Statically Indeterminate Beam)

উদাহরণঃ আবদ্ধ বীম (Fixed Beam)

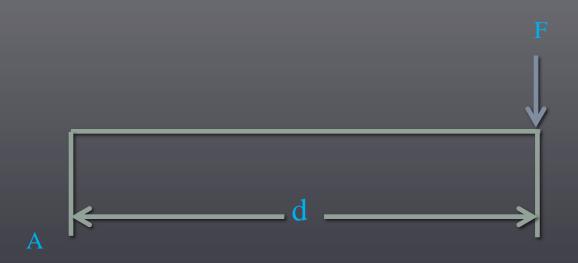
ধারাবাহিক বীম (Continuos Beam)

বীমের প্রতিক্রিয়া বল নির্ণয়ঃ

- বৈশ্লেষিক পদ্ধতি (Analytical Method)
- লেখচিত্র পদ্ধতি (Graphical Method)

বলের মোমেন্ট

কোন বস্তুর উপর প্রযুক্ত বলের প্রভাবে ঐ বস্তু কোন একটি বিন্দু বা অক্ষের সাপেক্ষে ঘুরতে চায় বা ঘুরতে থাকে । তাহলে এই ঘুরতে থাকার প্রবণতার পরিমাণকে প্রযুক্ত বলের মোমেন্ট বলে ।



A বিন্দুর সাপেক্ষে মোমেন্ট, MA= প্রযুক্ত বল imes লম্ব দূরত্ব=F imes d

মোমেন্টের এককঃ Kg-m, Kg-cm, N-m, KN-m ইত্যাদি ।

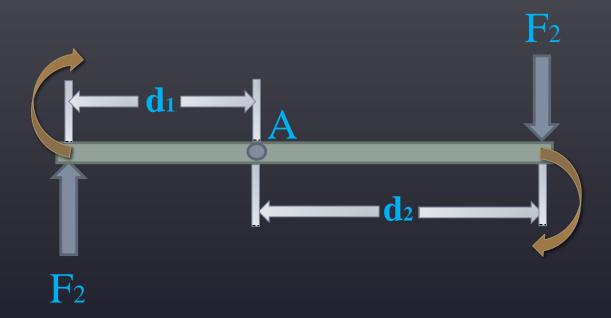
মোমেন্টের প্রকারভেদঃ

মোমেন্ট দুই প্রকার। যথাঃ

- 1. Clock-wise Moment
- 2. Anticlock-wise Moment

Clock-wise Moment:

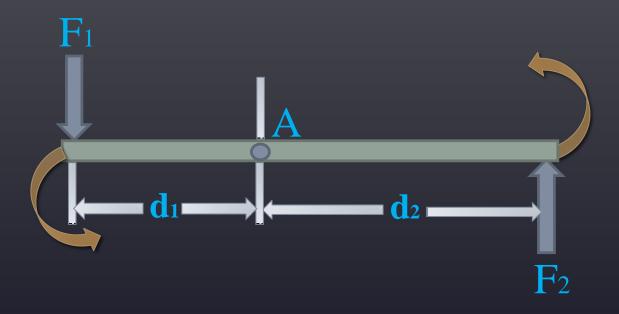
কোন বল যদি নির্দিষ্ট লম্ব দূরত্বে থেকে বস্তুকে ঘড়ির কাঁটার দিকে ঘুরায় বা ঘুরাতে চায় , তা হলে বলের এরূপ ঘূর্ণন প্রবনতাকে Clock-wise Moment বলে ।



Anticlock-wise Moment:

কোন বল যদি নির্দিষ্ট লম্ব দূরত্বে থেকে বস্তুকে ঘড়ির কাঁটার বিপরীত দিকে ঘুরায় বা ঘুরাতে চায় , তা হলে বলের এরূপ ঘূর্ণন প্রবনতাকে

Anticlock-wise Moment বলে ।

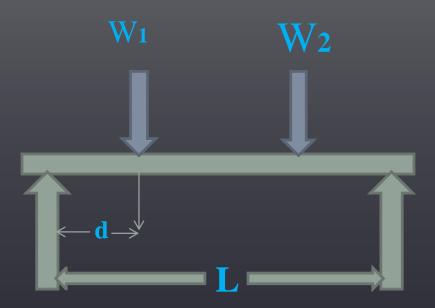


কোন কাঠামোর উপর আগত বিভিন্ন প্রকারের বলকে লোড বলে |

লোডের ধরণঃ

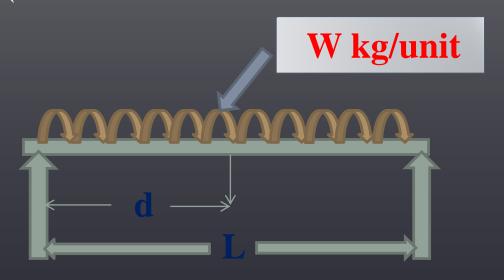
- * কেন্দ্ৰীভূত বা বিন্দু লোড (Point Load)
- * সমভাবে বিস্তৃত লোড (Distributed Load)
- * অসমভাবে বিস্তৃত লোড বা ত্রিভূজাকার লোড (Triangular Load)
- * হেলানো লোড (Inclined Load)

কেন্দ্রীভূত বা বিন্দু লোড (Point Load)



মোমেন্ট=লোড \times (মোমেন্ট-বিন্দু হতে লোডের প্রয়োগ বিন্দু পর্যন্ত) দূরত্ব অর্থাৎ, M= W $\times d$

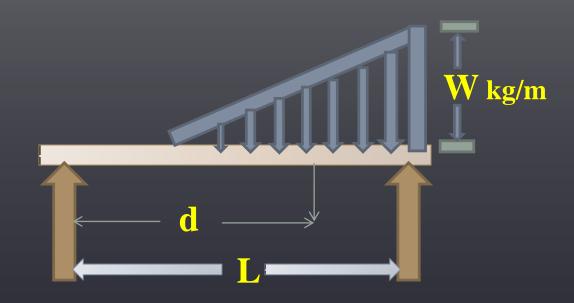
সমভাবে বিস্তৃত লোড (Distributed Load)



মোট বিস্তৃত লোড = $W \times L$

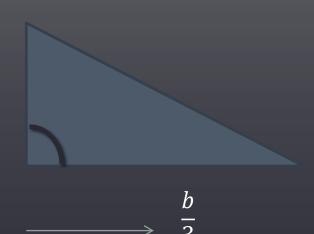
মোমেন্ট= মোট বিস্তৃত লোড × (মোমেন্ট-বিন্দু হতে বিস্তৃত লোডের মধ্য বিন্দু পর্যন্ত) দূরত্ব

অসমভাবে বিস্তৃত লোড বা ত্রিভূজাকার লোড (Triangular Load)

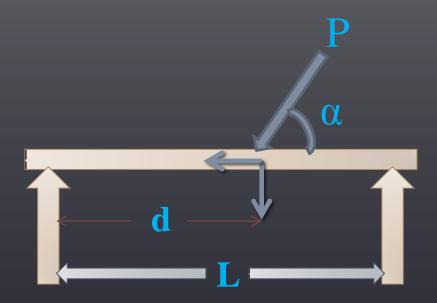


মোমেন্ট = ত্রিভূজের ক্ষেত্রফল × (মোমেন্ট-বিন্দু হতে ত্রিভূজের ভরকেন্দ্র পর্যন্ত) দূরত্ব

ত্রিভূজের ভরকেন্দ্র

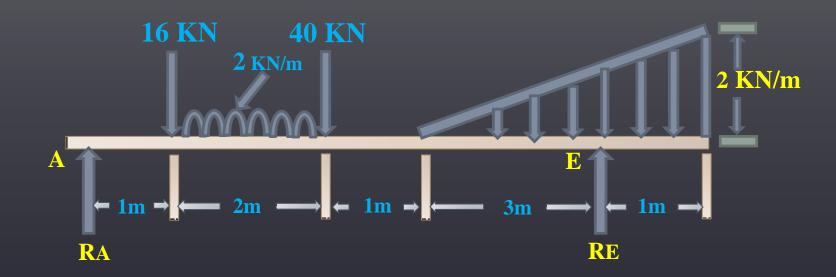


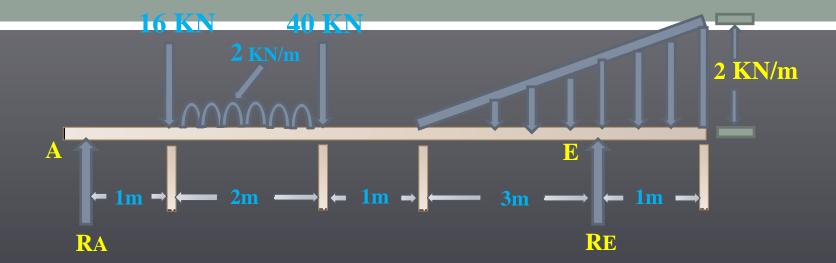
হেলানো লোড (Inclined Load)



মোমেন্ট= হেলানো লোডের উলম্ব উপাংশ × (মোমেন্ট-বিন্দু হতে লোডের প্রয়োগ বিন্দু পর্যন্ত) দূরত্ব

সাধারণভাবে স্থাপিত AB বীম এর দৈর্ঘ্য 8m এর উপর চিত্রানুযায়ী লোড প্রয়োগ করা হলে Aও E বিন্দুতে প্রতিক্রিয়া বল নির্ণয় কর ।



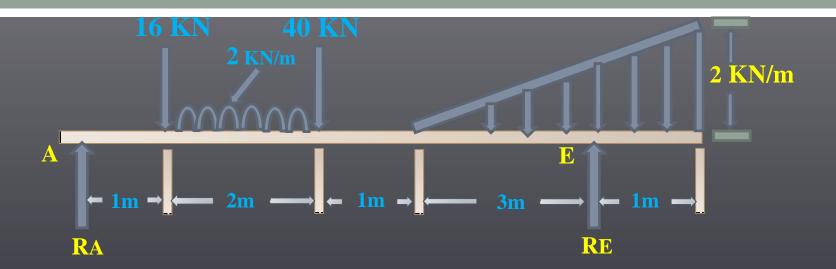


A বিন্দুতে মোমেন্ট নিয়ে পাই,

$$\Rightarrow 16 \times 1 + 2 \times 2 \times (1+1) + 40 \times 3 + (\frac{1}{2} \times 4 \times 2) \times (4 + \frac{2 \times 4}{3}) - \text{RE} \times 7 = 0$$

$$\Rightarrow \text{RE} \times 7 = 170.67$$

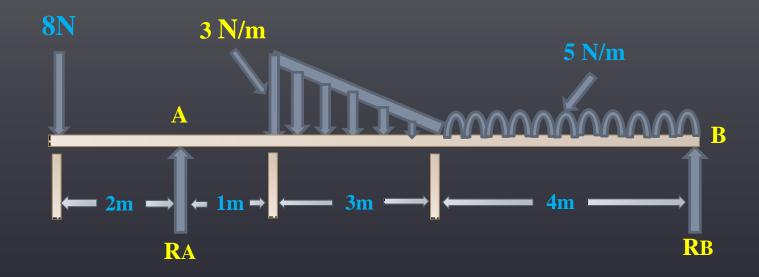
$$\Rightarrow \text{RE} = 24.38 \text{ KN (Ans)}$$

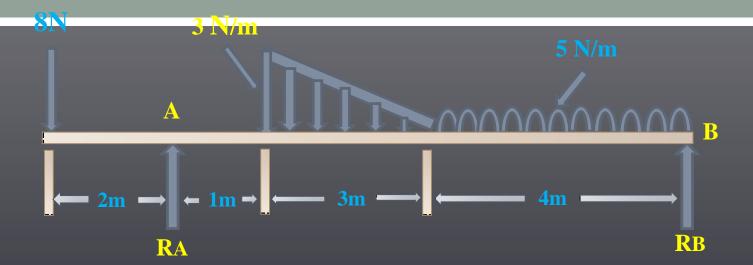


+
$$\triangle VF = 0$$

RA+ RE - 16 - 4 - 40 - $(\frac{1}{2} \times 4 \times 2) = 0$
 \Rightarrow RA = 64 - RE
 \Rightarrow RA = 64 - 24.38
 \Rightarrow RA = 39.62 KN (Ans)

চিত্রানুযায়ী $10 \mathrm{m}$ দৈর্ঘ্যের বীমটির উপর লোড স্থাপন করা আছে। Aও B বিন্দুতে প্রতিক্রিয়া বল নির্ণয় কর ।

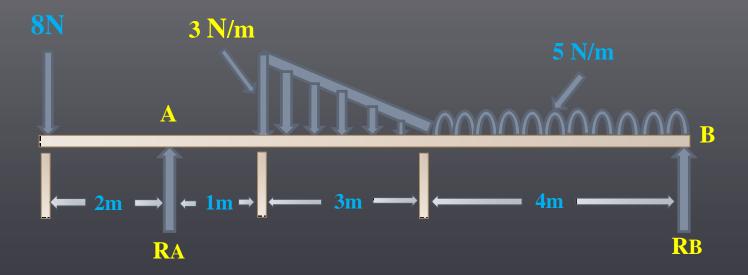




A বিন্দুতে মোমেন্ট নিয়ে পাই,

$$\Rightarrow -8 \times 2 + (\frac{1}{2} \times 3 \times 3) \times (1 + \frac{3}{3}) + 5 \times 4 \times (4 + \frac{4}{2}) - RB \times 8 = 0$$

$$\Rightarrow RB = 14.12 \text{ N (Ans)}$$

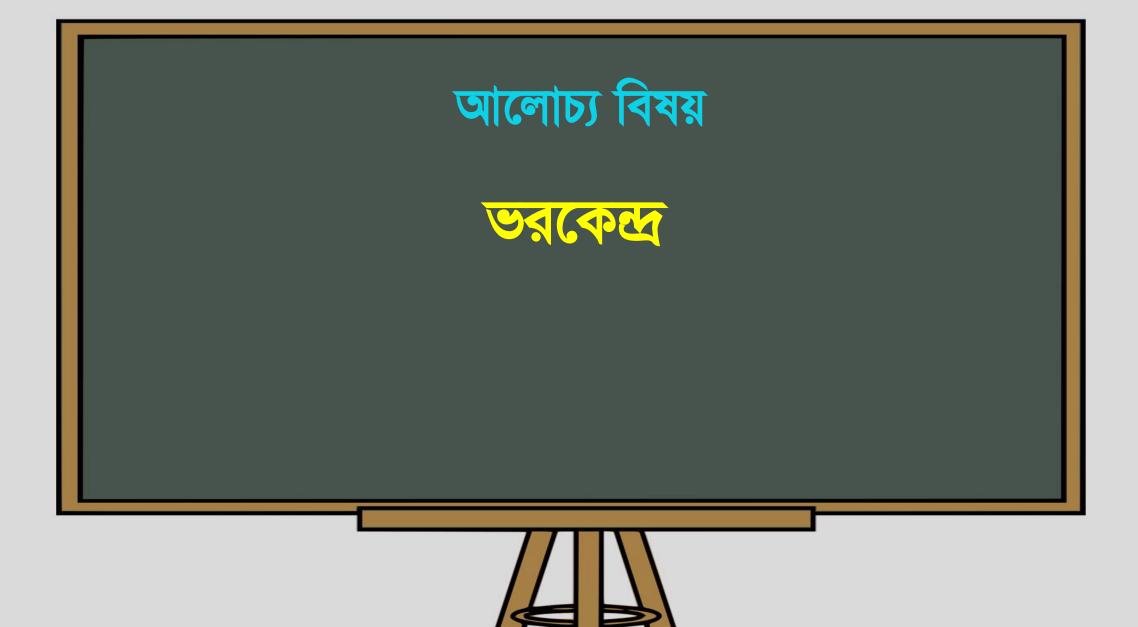


+
$$\triangle VF = 0$$

RA+RB-8- $(\frac{1}{2} \times 3 \times 3) + 5 \times 4 = 0$
 \Rightarrow RA = 18.37 N (Ans)

বাড়ির কাজ

বিগত পাঁচ সালের বা.কা.শি.বো. সমাপনী পরীক্ষার বীমের প্রতিক্রিয়া বল নির্ণয়ের অঙ্কের সমাধান করা ।



ভরকেশ্র

কোন বস্তুর মোট অভিকর্ষজ বল বা ওজন ঐ বস্তুর মধ্যে যে বিন্দু দিয়ে ক্রিয়া করে তাকেই বা সেই বিন্দু কেই ঐ বস্তুর ভরকেন্দ্র বলে। একে সংক্ষেপে C.G বলা হয়।

Centroid / কেশ্ৰ

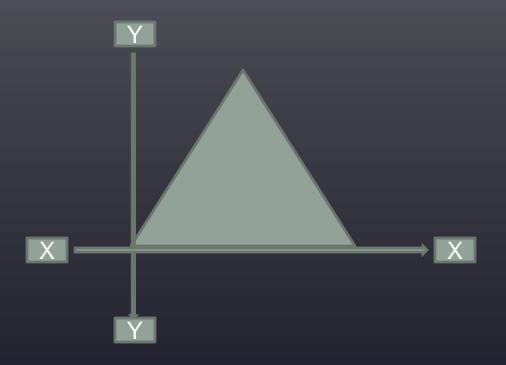
- সেন্ট্রয়েড বা কেন্দ্র এবং ভরকেন্দ্র মুলত একই। তবে বিভিন্ন জ্যামিতিক ক্ষেত্র যেমনঃ ত্রিভুজ, আয়তক্ষেত্র ইত্যাদির বেলায় বলা হয় সেন্ট্রয়েড বা কেন্দ্র।
- পক্ষান্তরে শারীরিক গঠন আছে, ওজন আছে অথবা সহজ কথায় বাস্তবিক আকার আছে যেমনঃ বই,তক্তা, রড, ইট ইত্যাদির ক্ষেত্রে ভরকেন্দ্র কথাটি ব্যবহার করা হয়।

Methods to calculate center of gravity

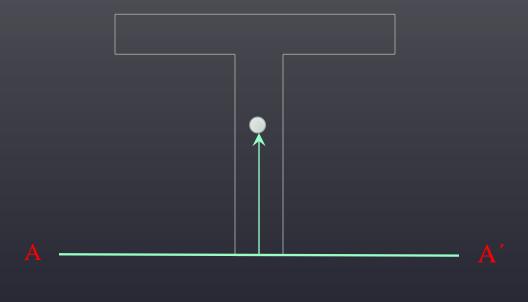
- By Geometrical consideration.
- By Moment.
- By Graphical method.
- Integration method.

Reference Axis

 যে নির্দিষ্ট অক্ষের সাহায্যে কোন বস্তু বা ক্ষেত্রের ভারকেন্দ্র বা কেন্দ্র নির্ণয় করা হয় তাকে রেফারেন্স অক্ষ বলে ।



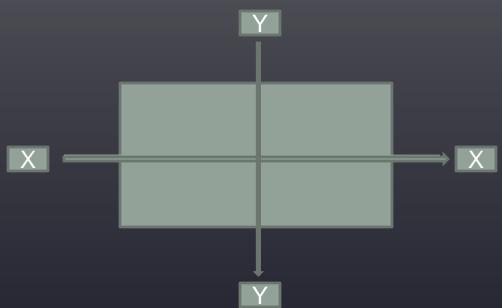
T section



রেফারেন্স অক্ষ A- A'

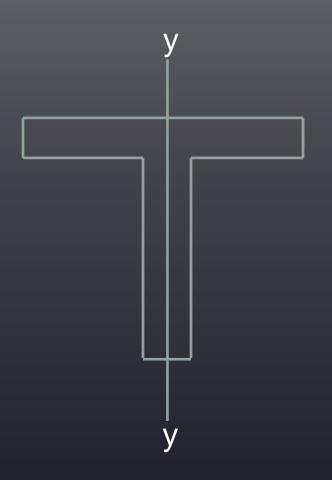
Axis of Symmetry

· কোন সেকশন বা ক্ষেত্রকে যে অক্ষ বরাবর সমান দুই ভাগে ভাগ করা যায় সেই অক্ষকে Axis of Symmetry বা প্রতিসম অক্ষ বলে।



- কোন সেকশন বা ক্ষেত্র যে অক্ষ বরাবর প্রতিসম ভরকেন্দ্র সেই অক্ষে অবস্থিত হবে ।
- যদি কোন অক্ষ বরাবর প্রতিসম না হয় তাহলে উভয় অক্ষেই ভরকেন্দ্র অবস্থিত হবে ।

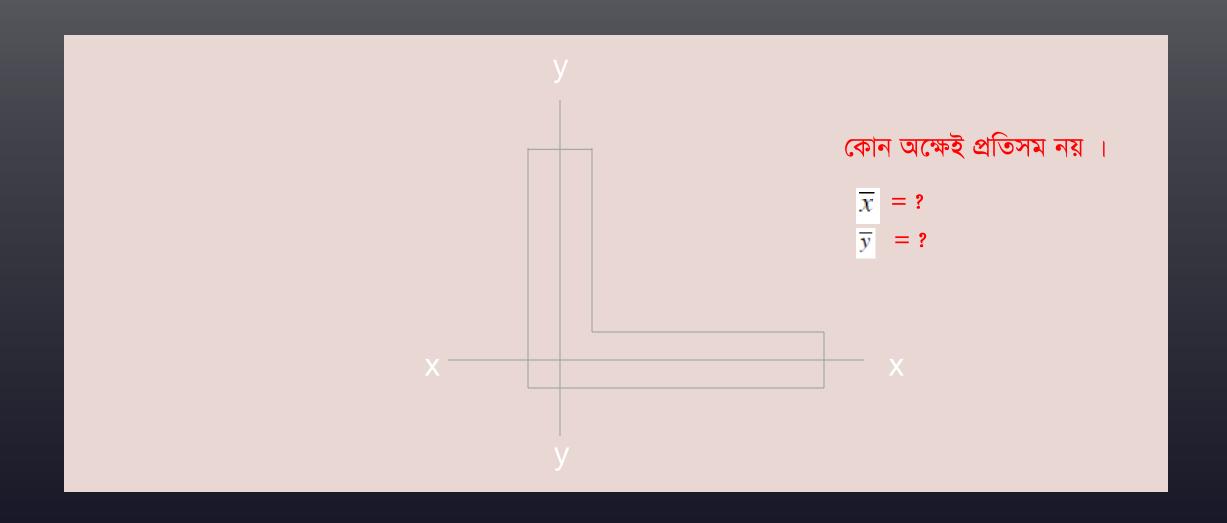
T section



y-y অক্ষ বরাবর প্রতিসং

$$\overline{y} = 2$$

L section

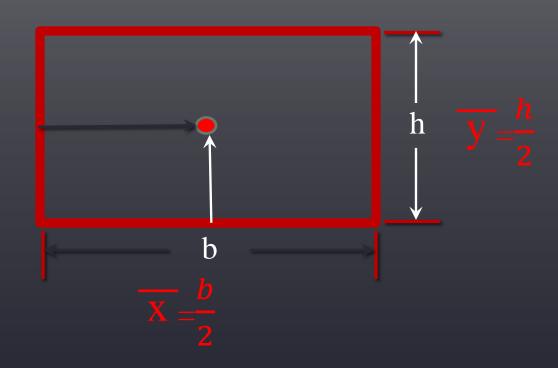


ভরকেন্দ্র নির্ণয়ঃ

$$\overline{X} = \frac{a_1 X_1 + a_2 X_2 + a_3 X_3 + ...}{a_1 + a_2 + a_3 + ...}$$

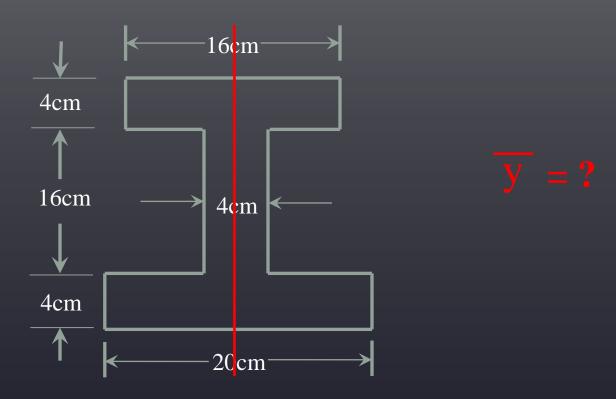
$$\frac{-}{y} = \frac{a_1y_1 + a_2y_2 + a_3y_3 + ...}{a_1 + a_2 + a_3 + ...}$$

আয়তক্ষেত্রের ভরকেন্দ্র নির্ণয়ঃ

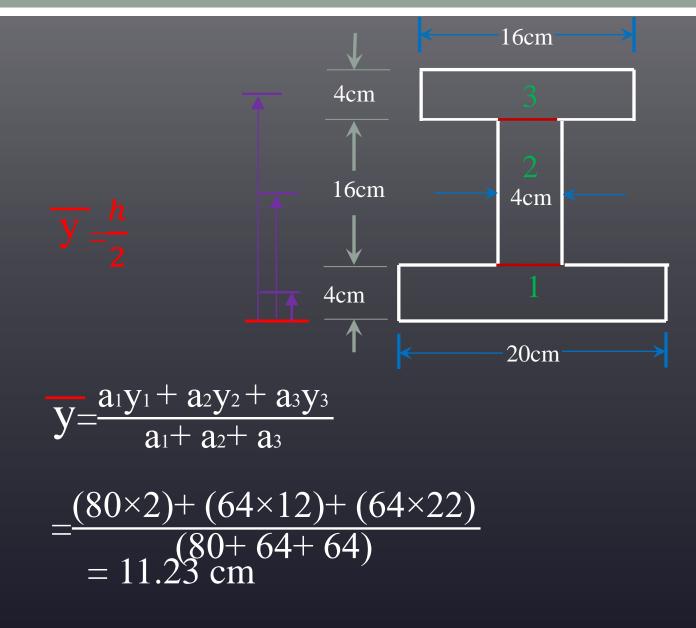


 $Area = b \times h$

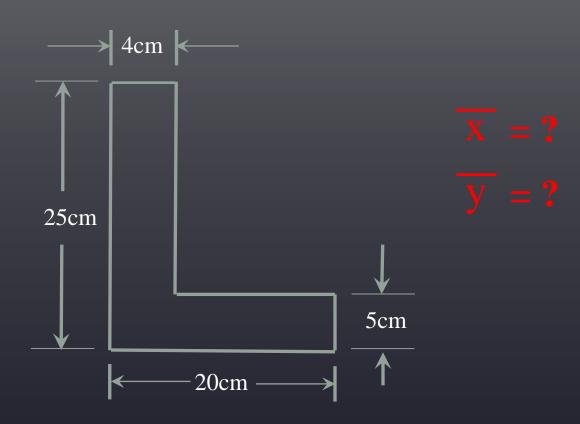
চিত্রে প্রদর্শিত I সেকশনটির ভরকেন্দ্র নির্ণয় কর।



$$a_1 = 20 \times 4 = 80 \text{ cm}^2$$
 $a_2 = 16 \times 4 = 64 \text{ cm}^2$
 $a_3 = 16 \times 4 = 64 \text{ cm}^2$
 $y_1 = \frac{4}{2} = 2 \text{ cm}$
 $y_2 = 4 + \frac{16}{2} = 12 \text{ cm}$
 $y_3 = 4 + 16 + \frac{4}{2} = 22 \text{ cm}$



চিত্রে প্রদর্শিত L সেকশনটির ভরকেন্দ্র নির্ণয় কর ।



$$a_1 = 20 \times 5 = 100 \text{ cm}^2$$

$$a_2 = 20 \times 4 = 80 \text{ cm}^2$$

$$y_1 = \frac{5}{2} = 2.5 \text{ cm}$$

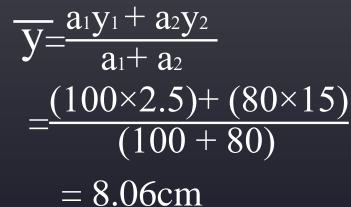
$$\overline{X} = \frac{a_1 x_1 + a_2 x_2}{a_1 + a_2}$$

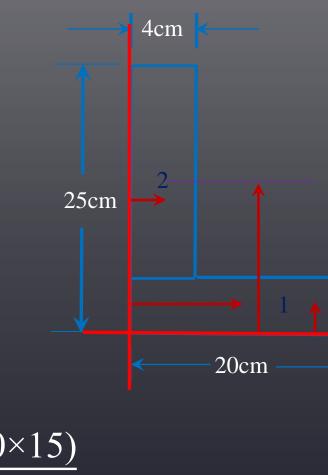
$$= \frac{(100\times10) + (80\times2)}{(100 + 80)}$$
$$= 6.44 \text{ cm}$$

$$X_1 = \frac{20}{2} = 10 \text{ cm}$$

$$X_2 = \frac{4}{2} = 2 \text{ cm}$$

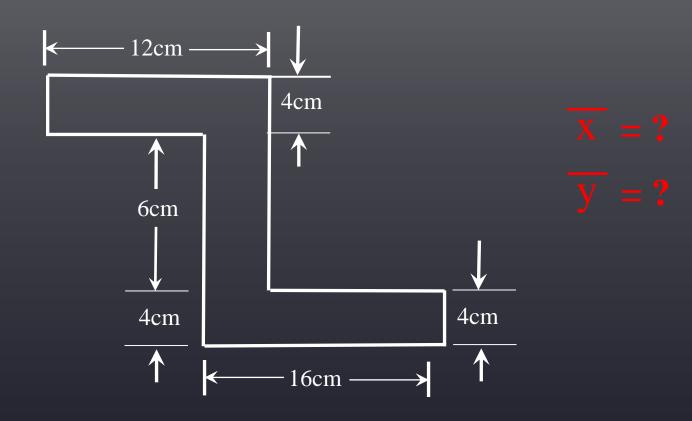
$$y_2 = 5 + \frac{20}{2} = 15 \text{ cm}$$





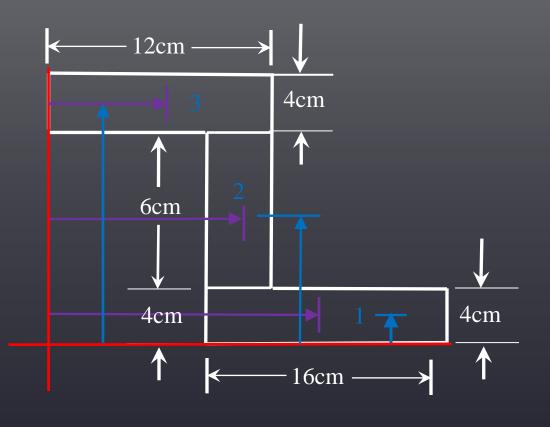
5cm

চিত্রে প্রদর্শিত Z সেকশনটির ভরকেন্দ্র নির্ণয় কর ।



$$a_1 = 16 \times 4 = 64 \text{ cm}^2$$

 $a_2 = 6 \times 4 = 24 \text{ cm}^2$
 $a_3 = 12 \times 4 = 48 \text{cm}^2$
 $X_1 = 8 + \frac{16}{2} = 16 \text{ cm}$
 $X_2 = 8 + \frac{4}{2} = 10 \text{ cm}$
 $X_3 = \frac{12}{2} = 6 \text{ cm}$
 $y_1 = \frac{4}{2} = 2 \text{ cm}$
 $y_2 = 4 + \frac{6}{2} = 7 \text{cm}$
 $y_3 = 4 + 6 + \frac{4}{2} = 12 \text{ cm}$



$$X = \frac{a_1 x_1 + a_2 x_2 + a_3 x_3}{a_1 + a_2}$$

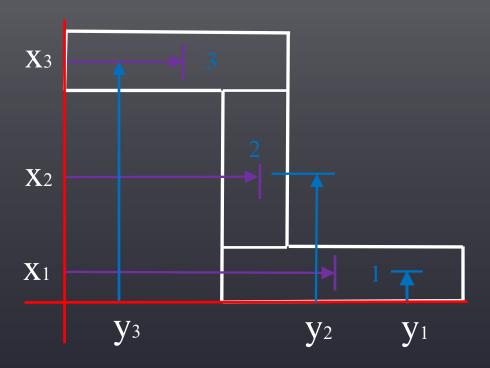
$$= \frac{(100 \times 10) + (80 \times 2)}{(100 + 80)}$$

$$= 6.44 \text{ cm}$$

$$y = \frac{a_1y_1 + a_2y_2 + a_3y_3}{a_1 + a_2}$$

$$= \frac{(100 \times 2.5) + (80 \times 15)}{(100 + 80)}$$

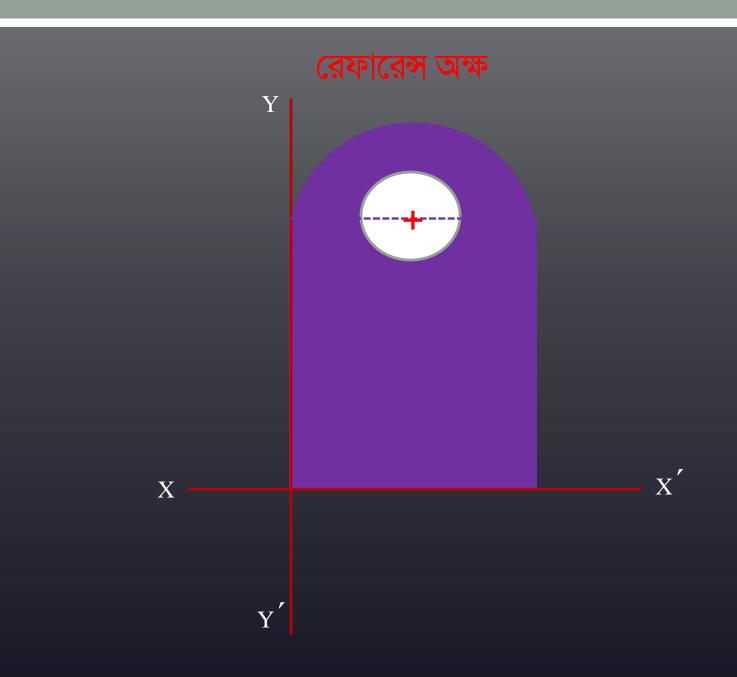
$$= 8.06cm$$



আলোচ্য বিষয় যৌগিক ক্ষেত্রের ভরকেন্দ্র

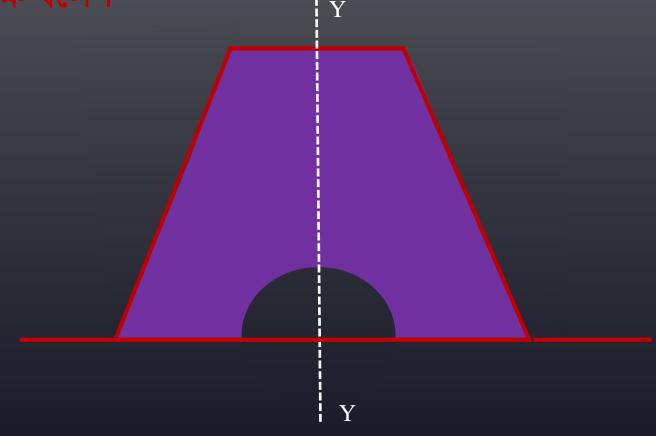
Reference Axis

যে নির্দিষ্ট অক্ষের সাহায্যে কোন বস্তু বা ক্ষেত্রের ভারকেন্দ্র বা কেন্দ্র নির্ণয় করা হয়
 তাকে রেফারেন্স অক্ষ বলে ।



Axis of Symmetry

 কোন সেকশন বা ক্ষেত্রকে যে অক্ষ বরাবর সমান দুই ভাগে ভাগ করা যায় সেই অক্ষকে Axis of Symmetry বা প্রতিসম অক্ষ বলে।



- কোন সেকশন বা ক্ষেত্র যে অক্ষ বরাবর প্রতিসম ভরকেন্দ্র সেই অক্ষে অবস্থিত হবে ।
- যদি কোন অক্ষ বরাবর প্রতিসম না হয় তাহলে উভয় অক্ষেই ভরকেন্দ্র অবস্থিত হবে ।

ভরকেন্দ্র নির্ণয়ঃ

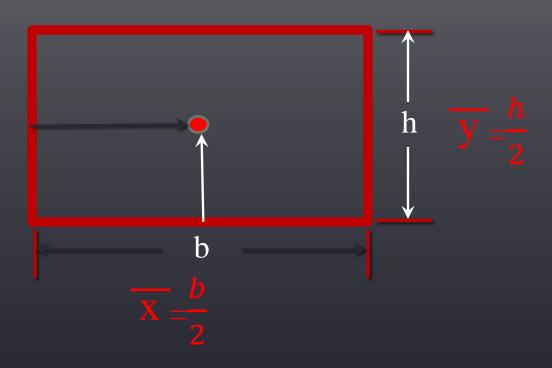
$$\overline{X} = \frac{a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots}{a_1 + a_2 + a_3 + \dots}$$

$$\frac{-}{y} = \frac{a_1y_1 + a_2y_2 + a_3y_3 + ...}{a_1 + a_2 + a_3 + ...}$$

$$x = \frac{a_1x_1 - a_2x_2 - a_3x_3}{a_1 - a_2 - a_3}$$

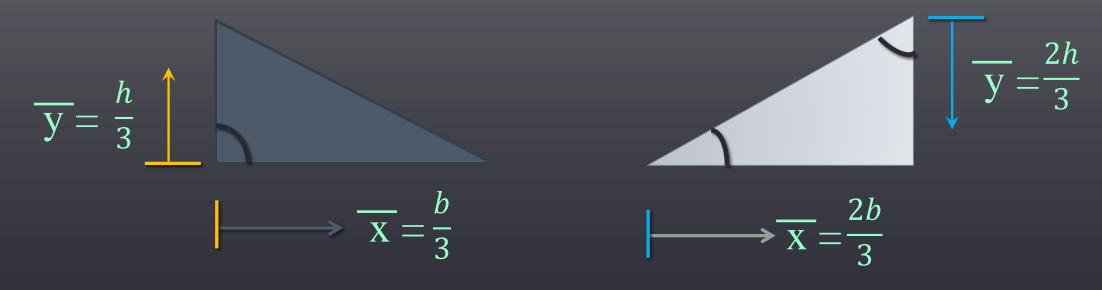
$$y = \frac{a_1y_1 - a_2y_2 - a_3y_3}{a_1 - a_2 - a_3}$$

আয়তক্ষেত্রের ভরকেন্দ্র নির্ণয়ঃ



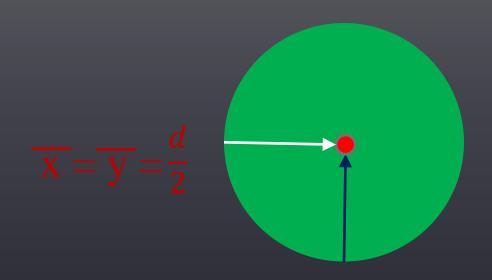
 $Area = b \times h$

তিভূজের ভরকেন্দ্র

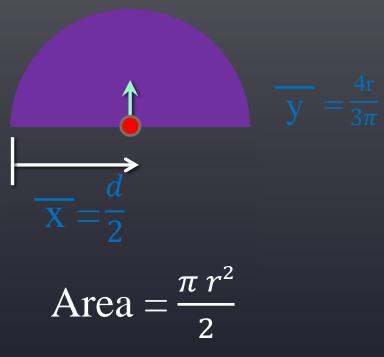


Area =
$$\frac{1}{2} \times b \times h$$

বৃত্তের ভরকেন্দ্র

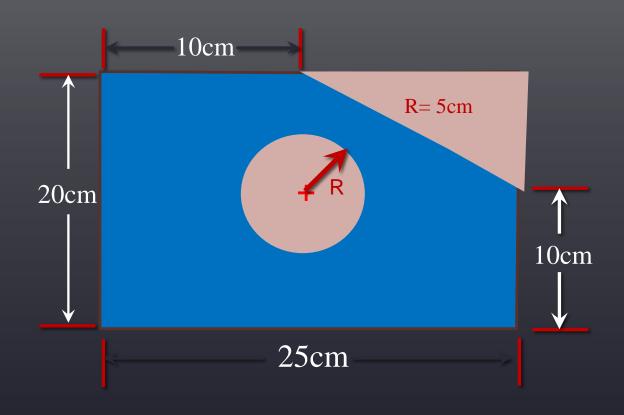


Area =
$$\frac{\pi d^2}{4}$$
 or πr^2



Area =
$$\frac{\pi r^2}{2}$$

চিত্রের X ও Y অক্ষের সাপেক্ষে ভরকেন্দ্র নির্ণয় কর।



$$a_{1} = 25 \times 20 = 500 \text{ cm}^{2}$$

$$a_{2} = \frac{\pi \times (10)^{2}}{4} = 78.54 \text{cm}^{2}$$

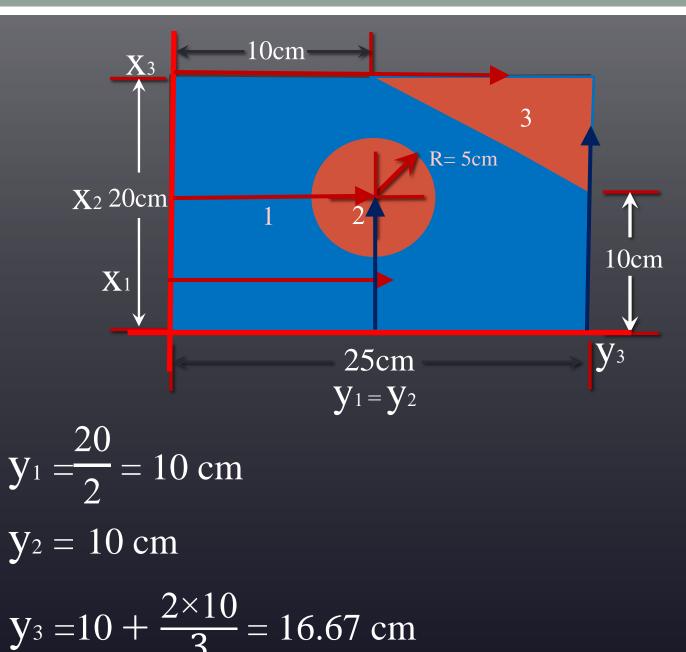
$$a_{3} = \frac{1}{2} \times 15 \times 10 = 75 \text{ cm}^{2}$$

$$X_{1} = \frac{25}{2} = 12.5 \text{ cm}$$

$$X_{2} = 10 \text{ cm}$$

$$X_{3} = 10 + \frac{2b}{3}$$

$$= 10 + \frac{2 \times 15}{3} = 20 \text{ cm}$$



$$X = \frac{a_1X_1 - a_2X_2 - a_3X_3}{a_1 - a_2 - a_3}$$

$$= \frac{(500 \times 12.5) - (78.54 \times 10) - (75 \times 20)}{(500 - 78.54 - 75)}$$

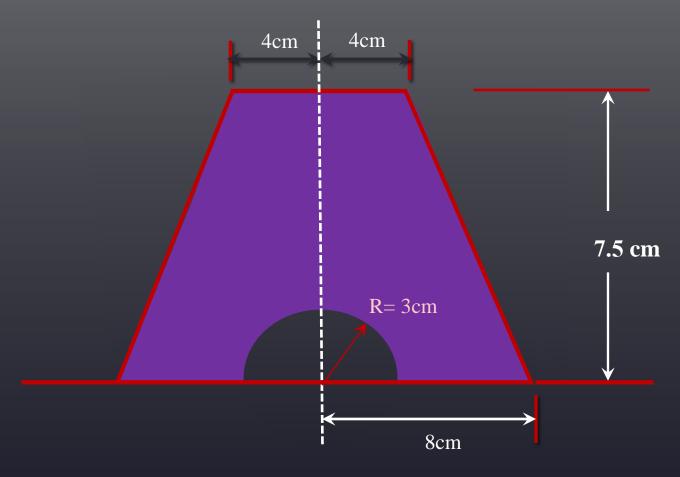
$$= 11.44 \text{ cm}$$

$$y = \frac{a_1y_1 - a_2y_2 - a_3y_3}{a_1 - a_2 - a_3}$$

$$= \frac{(500 \times 10) - (78.54 \times 10) - (75 \times 16.67)}{(500 - 78.54 - 75)}$$

$$= 8.56 \text{ cm}$$

চিত্রের ক্ষেত্রের ভরকেন্দ্র নির্ণয় কর।



$$a_1 = a_3 = \frac{1}{2} \times 4 \times 7.5 = 15 \text{ cm}^2$$

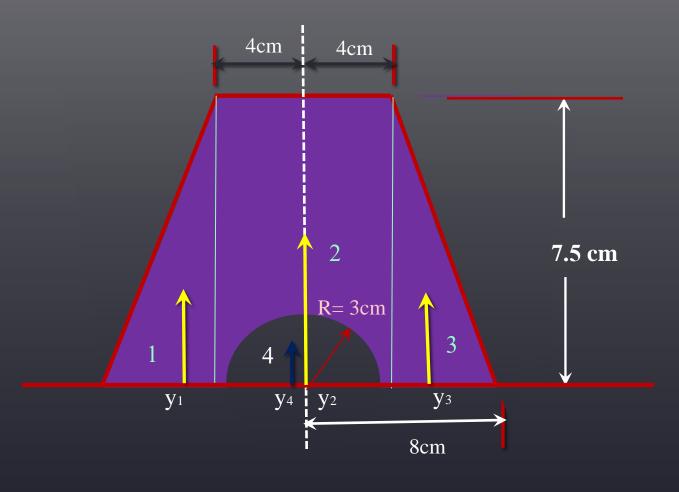
$$a_2 = 8 \times 7.5 = 60 \text{ cm}^2$$

$$a_4 = \frac{\pi \times (3)^2}{2} = 14.13 \text{cm}^2$$

$$y_1 = y_3 = \frac{7.5}{3} = 2.5 \text{ cm}$$

$$y_2 = \frac{7.5}{2} = 3.75 \text{ cm}$$
 $y_4 = \frac{4r}{3\pi} = \frac{4 \times 3}{3\pi} = 1.27 \text{ cm}$

$$y_4 = \frac{4r}{3\pi} = \frac{4 \times 3}{3\pi} = 1.27 \text{ cm}$$



$$a_1 = a_3 = 15 \text{ cm}^2$$

$$a_2 = 60 \text{ cm}^2$$

$$a_4 = 14.13 \text{cm}^2$$

$$y_1 = y_3 = 2.5 \text{ cm}$$

$$y_2 = 3.75 \text{ cm}$$

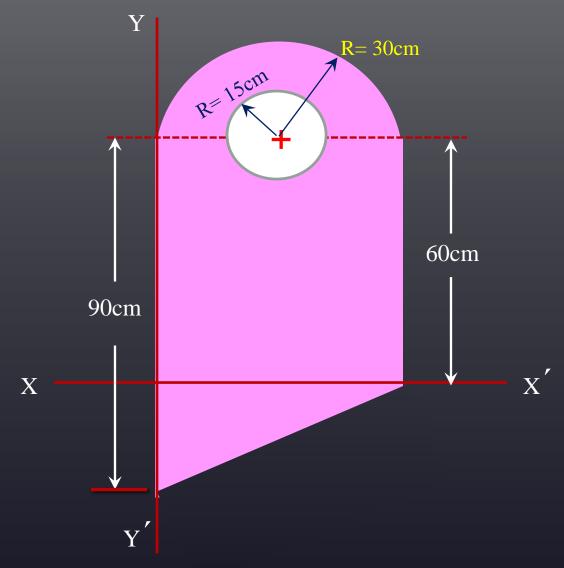
$$y_4 = 1.27 \text{ cm}$$

$$y = \frac{a_1y_1 + a_2y_2 + a_3y_3 - a_4y_4}{a_1 + a_2 + a_3 - a_4}$$

$$= \frac{(15\times2.5) + (60\times3.75) + (15\times2.5) - (14.13\times1.27)}{(15+60+15-14.13)}$$

= 3.72 cm

চিত্রের X ও Y অক্ষের সাপেক্ষে ভরকেন্দ্র নির্ণয় কর।



$$a_1 = 60 \times 60 = 3600 \text{ cm}^2$$
 $a_2 = \frac{1}{2} \times 60 \times 30 = 900 \text{ cm}^2$

$$a_3 = \frac{\pi \times (30)^2}{2} = 1413.72 \text{cm}^2$$

$$a_4 = \pi \times (15)^2 = 706.86 \text{ cm}^2$$

$$X_1 = 30 \text{ cm}$$

$$X_2 = \frac{60}{3} = 20$$
cm

$$X_3 = 30 \text{ cm}$$

$$X_4 = 30 \text{ cm}$$

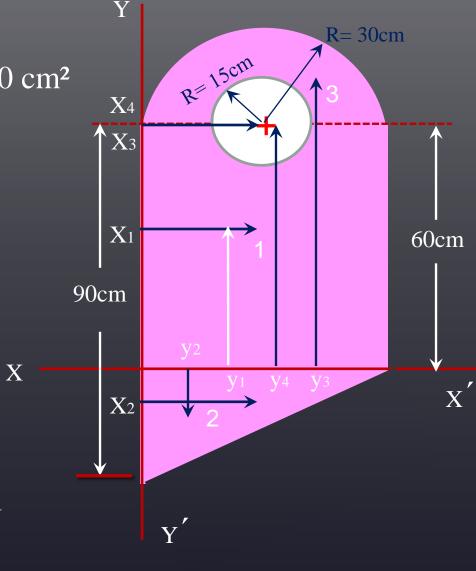
$$y_{1} = \frac{60}{2} = 30 \text{ cm}$$

$$y_{2} = \frac{30}{3} = 10 \text{ cm}$$

$$y_{3} = 60 + \frac{4r}{3\pi}$$

$$= 60 + \frac{4 \times 30}{3\pi} = 72.73 \text{ cm}$$

$$y_{4} = 60 \text{ cm}$$



$$X = \frac{a_1X_1 + a_2X_2 + a_3X_3 - a_4X_4}{a_1 + a_2 + a_3 - a_4}$$

$$= \frac{(3600 \times 30) + (900 \times 20) + (1413.72 \times 30) - (706.86 \times 30)}{(3600 + 900 + 1413.72 - 706.86)}$$

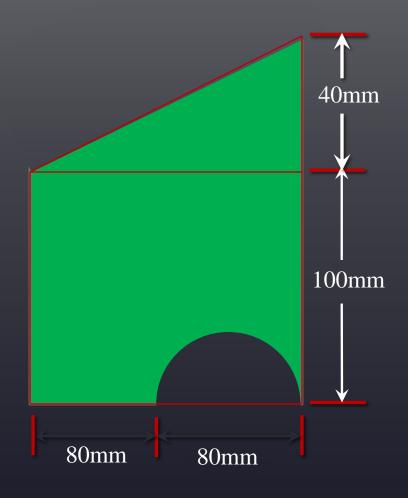
$$= 28.27 \text{ cm}$$

$$Y = \frac{a_1Y_1 + a_2Y_2 + a_3Y_3 - a_4Y_4}{a_1 + a_2 + a_3 - a_4}$$

$$= \frac{(3600 \times 30) + (900 \times 10) + (1413.72 \times 72.73) - (706.86 \times 60)}{(3600 + 900 + 1413.72 - 706.86)}$$

$$= 34.07 \text{ cm}$$

চিত্রের ক্ষেত্রের সেন্ট্রয়েড নির্ণয় কর।



$$a_{1} = \frac{1}{2} \times 160 \times 40 = 3200 \text{ mm}^{2}$$

$$a_{2} = 160 \times 100 = 16000 \text{ mm}^{2}$$

$$a_{3} = \frac{\pi \times (40)^{2}}{2} = 2513.27 \text{ mm}^{2}$$

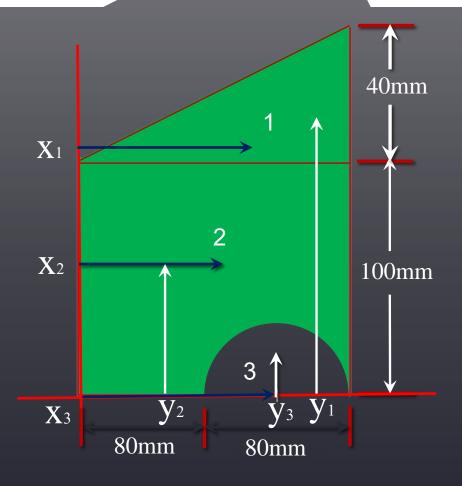
$$X_{1} = \frac{2b}{3} = \frac{2 \times 160}{3} = 106.66 \text{mm}$$

$$X_{2} = \frac{160}{2} = 80 \text{ mm}$$

$$X_{3} = 80 + 40 = 120 \text{ mm}$$

$$y_{1} = 100 + \frac{40}{3} = 113.3 \text{mm}$$

$$y_{2} = \frac{100}{2} = 50 \text{ mm}$$



$$y_3 = \frac{4r}{3\pi} = \frac{4 \times 40}{3\pi} = 16.97$$
mm

$$X = \frac{a_1X_1 + a_2X_2 - a_3X_3}{a_1 + a_2 - a_3}$$

$$= \frac{(3200 \times 106.66) + (1600 \times 80) - (2513.27 \times 120)}{(3200 + 1600 - 2513.27)}$$

$$= 79.08 \text{ mm}$$

$$y = \frac{a_1y_1 + a_2y_2 - a_3y_3}{a_1 + a_2 - a_3}$$

$$= \frac{(3200 \times 113.3) + (1600 \times 50) - (2513.27 \times 16.97)}{(3200 + 1600 - 2513.27)}$$

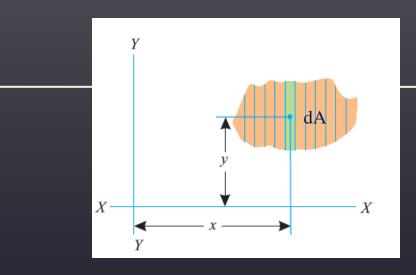
$$= 67.12 \text{ mm}$$

MOMENT OF INERTIA

মোমেন্ট অব ইনার্শিয়া

মোমেন্ট অব ইনার্শিয়া

কোন ক্ষেত্রের প্রতিটি ক্ষুদ্র ক্ষেত্রফল এবং নির্দিষ্ট অক্ষ হতে উহাদের দূরত্বের বর্গের গুণফলের সমষ্টিকে মোমেন্ট অব ইনার্শিয়া বলে ।



$$Ixx = y^2.dA Ixx = \sum y^2.dA$$

$$Iyy = x^2.dA \qquad Iyy = \sum x^2.dA$$

এর একক mm⁴, cm⁴, m⁴ ইত্যাদি

মোমেন্ট অব ইনার্শিয়া নির্ণয়ের পদ্ধতিঃ

মোমেন্ট অব ইনার্শিয়া নির্ণয়ে দুইটি পদ্ধতি ব্যবহৃত হয়।

যথাঃ

১)সমাকলন পদ্ধতি ২)রুথ-এর পদ্ধতি

আয়তাকার সেকশনের কেন্দ্রগামী অক্ষে মোমেন্ট অব ইনার্শিয়া:-

• এখানে,

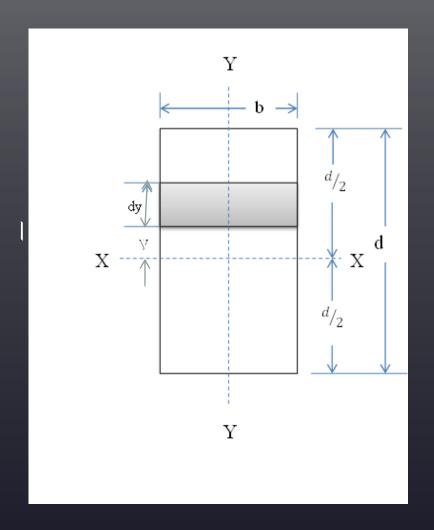
আয়তক্ষেত্রের প্রস্থ = b

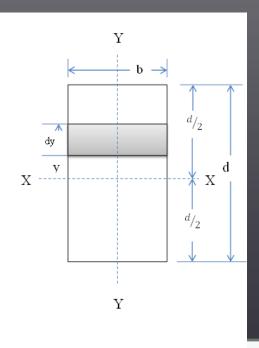
আয়তক্ষেত্রের গভীরতা <u>=</u> d

X অক্ষ থেকে y দুরে dy পুরুত্বের ক্ষুদ্র ফালি বিবেচনা করি ক্ষুদ্র ক্ষাল বিবেচনা করি ক্ষুদ্র ক্ষাল বিবেচনা করি ক্ষুদ্রতমঅংশেরক্ষেত্রফল, dA = b.dy

ক্ষুদ্রতম অংশের মোমেন্ট অব ইনার্শিয়া, $I_X = y^2.dA$

 \Rightarrow Ix = y².b. dy





সম্পূর্ণ আয়তক্ষেত্রের মোমেন্ট অব ইনার্শিয়া,

$$Icgx = \int_{-d/2}^{+d/2} y^2 . dA$$

$$= \int_{-d/2}^{+d/2} y^2 . bdy$$

$$= b \int_{-d/2}^{+d/2} y^2 . dy$$

$$= b \left[\frac{y^{2+1}}{2+1} \right]_{-d/2}^{+d/2}$$

$$= b \left[\frac{y^3}{3} \right]_{-d/2}^{+d/2}$$

$$= \frac{b}{3} \left[\left(\frac{d}{2} \right)^3 - \left(\frac{-d}{2} \right)^3 \right]$$

$$= \frac{b}{3} \left[\frac{d^3}{8} + \frac{d^3}{8} \right]$$

$$= \frac{b}{3} \times \left[\frac{2d^3}{8} \right]$$

$$\therefore \text{Icgx} = \frac{bd^3}{12}$$

<u>·•ভরকেন্দ্রেরসাপেক্ষেআয়তক্ষেত্রের</u>

সুতরাং, ভরকেন্দ্রগামীX অক্ষেরসাপেক্ষেআয়তক্ষেত্রের মোমেন্টঅবইনার্শিয়া $=rac{bd^3}{12}$

অনুরূপভাবে, ভরকেন্দ্রগামী Y অক্ষেরসাপেক্ষেআয়তক্ষেত্রের মোমেন্টঅবইনার্শিয়া $=rac{db^3}{12}$

আবার, ভূমির সাপেক্ষেআয়তক্ষেত্রের মোমেন্টঅবইনার্শিয়া
$$= \frac{bd^3}{12} + \mathrm{Ah^2}$$
 $= \frac{bd^3}{12} + (\mathrm{b.d}).(\frac{d}{2})^2$ $= \frac{bd^3}{3}$

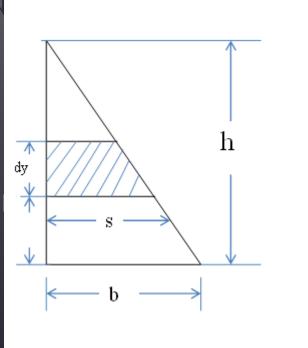
ত্রিভূজের ভূমি বরাবর অক্ষে মোমেন্ট অব ইনার্শিয়া এর এখানে,

ত্রিভূজের ভূমি = b

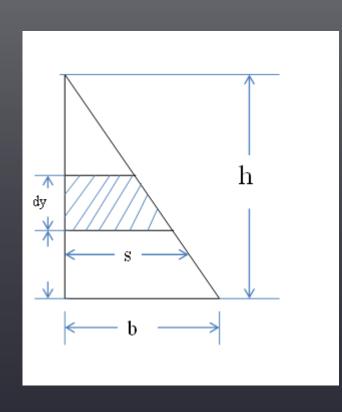
ত্রিভূজের উচ্চতা = h

$$\frac{s}{b} = \frac{h-y}{h}$$
 $\Rightarrow sh = b(h-y)$
 $\therefore s = \frac{b(h-y)}{h}$

ভূমি হতে y দূরে dy পুরুত্বের ক্ষুদ্র ফালি বিবেচনা করি,



$$Ixx = y^2.dA$$



$$A_{AB} = \int_{0}^{h} y^{2} dA$$

$$= \int_{0}^{h} y^{2} \times \frac{b}{h} (h - y) dy$$

$$= \frac{b}{h} \int_{0}^{h} (hy^{2} - y^{3}) dy = \frac{b}{h} \left[\frac{hy^{2+1}}{2+1} - \frac{y^{3+1}}{3+1} \right]_{0}^{h}$$

$$= \frac{b}{h} \left[\frac{hy^{3}}{3} - \frac{y^{4}}{4} \right]_{0}^{h} = \frac{b}{h} \left[\frac{h \cdot h^{3}}{3} - \frac{h^{4}}{4} \right]$$

$$= \frac{b}{h} \times \left[\frac{4h^{4} - 3h^{4}}{12} \right] = \frac{b}{h} \times \frac{h^{4}}{12} = \frac{bh^{3}}{12}$$

ভরকেন্দ্রগামীঅক্ষেরসাপেক্ষেত্রিভূজেরমোমেন্টঅবইনার্শিয়া

IAB= Ixx +
$$Ah^2$$
 সেমান্তরাল অক্ষীয় উপপাদ্য অনুযায়ী]
$$\Rightarrow \frac{bh^3}{12} = Ixx + \frac{1}{2} \times b \times h \times (\frac{h}{3})^2$$

$$\Rightarrow \frac{bh^3}{12} = Ixx + \frac{bh^3}{18}$$

$$\Rightarrow Ixx = \frac{bh^3}{12} - \frac{bh^3}{18}$$

$$= \frac{3bh^3 - 2bh^3}{36}$$

$$\therefore Icgx = \frac{bh^3}{36}$$

মোমেন্ট অব ইনার্শিয়ার উপপাদ্য

- ১। লম্ব অক্ষীয় উপপাদ্য ২। সমান্তরাল অক্ষীয় উপপাদ্য

লম্ব অক্ষীয় উপপাদ্য

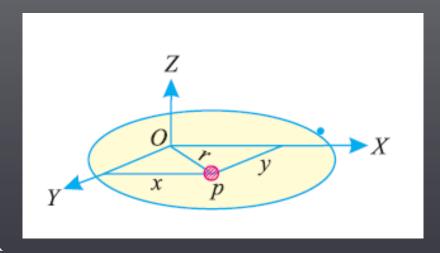
• কোন ক্ষেত্রের সমতলে লম্বভাবে অবস্থিত অক্ষের সাপেক্ষে মোমেন্ট অব ইনার্শিয়া ঐ সমতলে পরস্পর লম্বভাবে অবস্থিত অক্ষদ্বয়ের মোমেন্ট অব ইনার্শিয়ার যোগফলের সমান হবে ।

গাণিতিকভাবে, Izz = Ixx + Iyy

মনে করি, O বিন্দু হতে r দূরত্বে ক্ষুদ্র ক্ষেত্রফল dA dA ক্ষেত্রের স্থানাঙ্ক x এবং y

চিত্রের জ্যামিতিক ক্ষেত্র হতে আমরা পাই, $r^2=x^2+y^2$

X অক্ষ হতে dA ক্ষুদ্র ক্ষেত্রটির মোমেন্ট অব ইনার্শিয়া, $Ixx=y^2dA$ এবং Y অক্ষ হতে dA ক্ষুদ্র ক্ষেত্রটির মোমেন্ট অব ইনার্শিয়া, $Iyy=x^2dA$ অতএব, $Izz=r^2dA$



কোন ক্ষেত্রের উলম্ব অক্ষ বরাবর গৃহীত মোমেন্ট অব ইনার্শিয়াকে পোলার মোমেন্ট অব ইনার্শিয়া বলে । একে J দ্বারা সূচিত কর্রাহহয়্য ⊨ ∫ r²dA = ∫ (x² + y²) dA = ∫ x² dA + ∫ y²dA

= Ixx + Iyy

সমান্তরাল অক্ষীয় উপশাদ্য

যেকোন একটিঅক্ষেরসাপেক্ষেকোনক্ষেত্রেরমোমেন্টঅবইনার্শিয়া ঐ
 অক্ষেরসমান্তরালসেন্ট্রয়ডালঅক্ষেরসাপেক্ষেমোমেন্টঅবইনার্শিয়াএবংউক্তক্ষেত্রেরক্ষেত্রফলএবং ঐ
 দুটিসমান্তরালঅক্ষেরমধ্যবর্তীদূরত্বেরবর্গেরগুণফলেরযোগফলেরসমানহবে ।

অর্থ্যাৎ, lx = lg + Ah²

ভারকেন্দ্রগামীঅক্ষেরসমান্তরালঅক্ষেমোমেন্টঅবইনার্শিয়া=

ভারকেন্দ্রগামীঅক্ষেমোমেন্টঅবইনার্শিয়া + ক্ষেত্রফল × (দুইসমান্তরালঅক্ষেরমধ্যবর্তীলম্ব দুরত্ব)²।

মনে করি, ক্ষুদ্র ক্ষেত্রফল dA রেফারেন্স অক্ষ AA' হতে $\, y \,$ দূরত্বে অবস্থিত

AA' এর সমান্তরাল BB' অক্ষ টানি যা ক্ষেত্রটির ভরকেন্দ্র C দিয়ে অতিক্রম করে

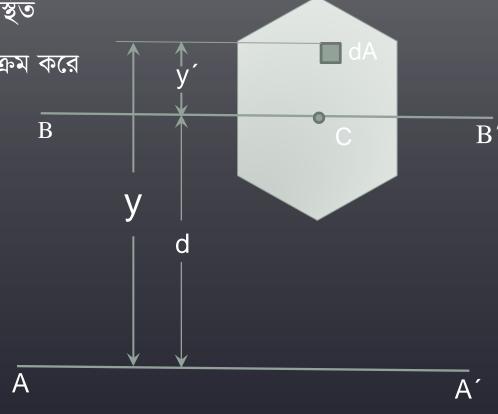
ক্ষুদ্র ক্ষেত্রফল dA হতে BB' পর্যন্ত দূরত্ব y'

এবং AA' হতে BB' পর্যন্ত দূরত্ব d

তাহলে, y = (y'+d)

$$I_{AA} = \int y^2 dA = \int (y'+d)^2 dA$$
$$= \int y'^2 dA + 2d \int y' dA + d^2 \int dA$$

$$=\int y^{\prime 2}\,dA+0+d^2A$$
 $[\because \int y^{\prime}dA=0$, ভরকেন্দ্র বরাবর ক্ষেত্রফলের ১ম মোমেন্ট $]$



চক্রগতির ব্যাসার্ধ বা আবর্তন ব্যাসার্ধ(Radious of gyration) • কোননির্দিষ্ট অক্ষেরসাপেক্ষেকোন ক্ষেত্রের মোমেন্টঅবইনার্শিয়াএবংউক্ত ক্ষেত্রের

• কোননির্দিষ্ট অক্ষেরসাপেক্ষেকোন ক্ষেত্রের মোমেন্টঅবইনার্শিয়াএবংউক্ত ক্ষেত্রের ক্ষেত্রফলেরঅনুপাতেরবর্গমূলকেচক্রগতিরব্যাসার্ধ বলে। চক্রগতিরব্যাসার্ধকে K দ্বারাপ্রকাশকরাহয়।

অর্থাৎ,
$$K=\sqrt{rac{I}{A}}$$
 ।

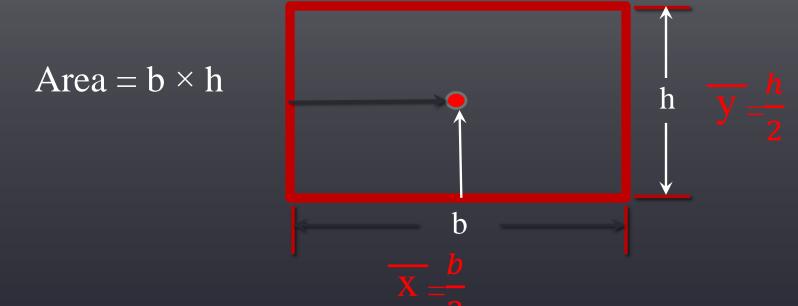
চাপা লোডবহনকারীকাঠামোডিজাইনেরজন্য চক্রগতিরব্যাসার্ধ খুবইপ্রয়োজনীয়।

সেকশন মডুলাস

কোন ক্ষেত্রের বা সেকশনের ভরকেন্দ্রগামী অক্ষের মোমেন্ট অব ইনার্শিয়াকে ঐ ক্ষেত্রের ব সেকশনের

ভরকেন্দ্রগামী অক্ষ হতে বহিঃস্থ প্রান্তের দূরত্ব দ্বারা ভাগ করলে যে মান পাওয়া যা তাকে সেকশন মুদ্ধুলাসু বলে । গানিতিকভাবেলেখাযায়সেকশনমডুলাস, $Z=rac{I}{V}$ ।

আয়তক্ষেত্রের মোমেন্ট অব ইনার্শিয়া নির্ণয়ঃ



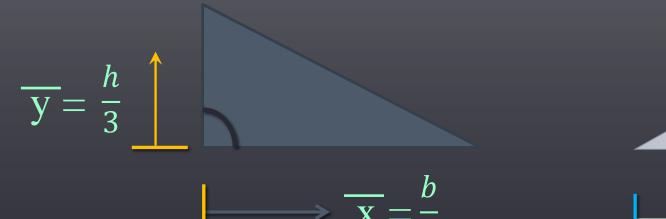
ভরকেন্দ্রের সাপেক্ষে মোমেন্ট অব ইনার্শিয়া

$$Ixx = \frac{bh^3}{12} \qquad Iyy = \frac{hb^3}{12}$$

ভূমির সাপেক্ষে মোমেন্ট অব ইনার্শিয়া

$$Ix = \frac{bh^3}{3}$$

ত্রিভূজের মোমেন্ট অব ইনার্শিয়া



$$\overline{\mathbf{x}} = \frac{2h}{3}$$

Area =
$$\frac{1}{2} \times b \times h$$

ভরকেন্দ্রের সাপেক্ষে মোমেন্ট অব ইনার্শিয়া

$$Ixx = \frac{bh^3}{36} \qquad Iyy = \frac{hb^3}{36}$$

ভূমির সাপেক্ষে মোমেন্ট অব ইনার্শিয়া

$$Ixx = \frac{bh^3}{12}$$

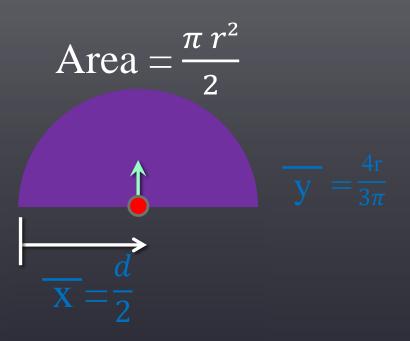
বৃত্তের মোমেন্ট অব ইনার্শিয়া

Area =
$$\frac{\pi d^2}{4}$$
 or πr^2

$$\overline{x} = \overline{y} = \frac{d}{2}$$

ভরকেন্দ্রের সাপেক্ষে মোমেন্ট অব ইনার্শিয়া

$$Ixx = Iyy = \frac{\pi D^4}{64}$$

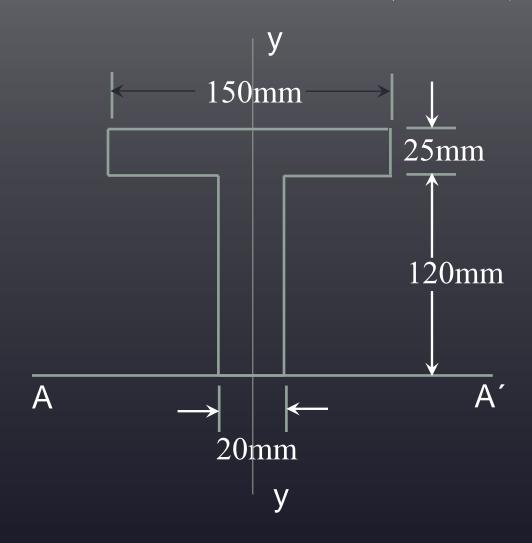


ভরকেন্দ্রের সাপেক্ষে মোমেন্ট অব ইনার্শিয়া

Ixx =0.11
$$r^4$$
 Iyy = $\frac{\pi D^4}{128}$

এই অধ্যায়ের প্রয়োজনীয় সূতাবলি :			
िव	ভারকেন্দ্র (X, Y)	ক্ষেত্রফল (A)	মোমেন্ট অব ইনার্শিয়া (M.I)
C d A A-b-	<u>b</u> , <u>d</u>	bd	$I_{\text{cgx}} = \frac{bd^3}{12}, I_{\text{cgy}} = \frac{db^3}{12}$ $I_{\text{AB}} = \frac{bd^3}{3}, I_{\text{AC}} = \frac{db^3}{3}$
T C B	$\frac{b}{3}, \frac{h}{3}$ (A বিন্দু হতে) $\frac{2b}{3}, \frac{2h}{3}$ (B ও C বিন্দু হতে)	$\frac{1}{2}$ bh	$I_{\text{cgx}} = \frac{bh^3}{36}, I_{\text{egy}} = \frac{hb^3}{36}$ $I_{\text{AB}} = \frac{bh^3}{12}, I_{\text{AC}} = \frac{hb^3}{12}$
	$\frac{b}{3}, \frac{d}{2}$	$\frac{1}{2}$ bd	$I_{\text{cgx}} = \frac{bd^3}{48}, I_{\text{cgx}} = \frac{db^3}{36}$
r+D+I	$\frac{\left(\frac{D}{2}, \frac{D}{2}\right)}{\text{or (r, r)}}$	$\frac{\pi}{4} D^2$ or, πr^2	$I_{cgx} = I_{cgy} = \frac{\pi D^4}{64} = \frac{\pi r^4}{4}$ $I_C = \frac{5\pi D^4}{64}$
$ \begin{array}{c} F \\ C \\ A \\ E \\ D \\ E \end{array} $	(r, 0.424r) বেজ থেকে (r, 0.576r) C থেকে	$\frac{\pi r^2}{2}$ or, $\frac{\pi}{2 \times 4}$ D ²	$I_{cgx} = 0.11r^4$ $I_{cgy} = I_{AB} = \frac{\pi D^4}{128}$ $I_{FF} = 0.63 r^4$
R+I	(0.424R, 0.424R [সমকোণ হতে] (0.576R, 0.576R)	$\frac{\pi R^2}{4}$ or, $\frac{\pi}{4 \times 4}$ D ²	$I_{\text{cgx}} = I_{\text{cgy}} = \frac{0.11R^4}{2}$

চিত্রের সেকশনটির হরিজন্টাল অক্ষের সাপেক্ষে সেন্ট্রয়েডগামী মোমেন্ট অব ইনার্শিয়া এবং রেডিয়াস অব জাইরেশন নির্ণয় কর ।

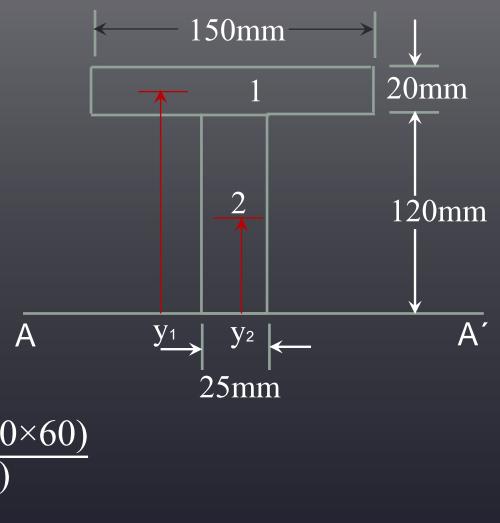


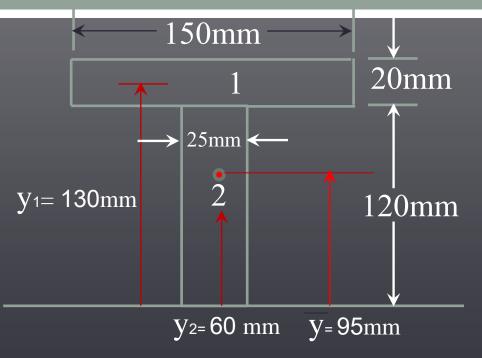
$$a_1 = 150 \times 20 = 3000 \text{ mm}^2$$
 $a_2 = 25 \times 120 = 3000 \text{ mm}^2$
 $y_1 = 120 + \frac{20}{2} = 130 \text{mm}$
 $y_2 = \frac{120}{2} = 60 \text{mm}$

$$\overline{y} = \frac{a_1y_1 + a_2y_2}{a_1 + a_2}$$

$$= \frac{(3000 \times 130) + (3000 \times 60)}{(3000 + 3000)}$$

$$= 95 \text{mm}$$





$$\begin{split} & I_{XX} = (I_{G_1} + A_1 h_1^2) + (I_{G_2} + A_2 h_2^2) \\ & = \frac{b_1 h_1^3}{12} + A_1 (y_1)^2 + \frac{b_2 h_2^3}{12} + A_2 (y_2)^2 \\ & = \frac{150 \times (20)^3}{12} + 3000 \times (95 - 130)^2 + \frac{25 \times (120)^3}{12} + 3000 \times (95 - 60)^2 \\ & = 11.05 \times 10^6 \text{ mm}^4 \end{split}$$

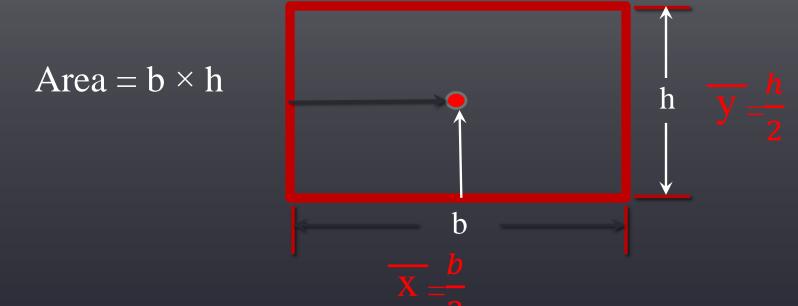
মোমেন্ট অব ইনার্শিয়ার ব্যবহার

- •বিম,কলাম,শ্যাফট,স্ট্র্যাট ইত্যাদি ডিজাইনের জন্য সামর্থ্য নির্ণয়ের ক্ষেত্রে মোমেন্ট অব ইনার্শিয়া ব্যবহার করা হয় ।
- মোমেন্ট অব ইনার্শিয়া বিম,কলাম,শ্যাফট ইত্যাদি বেঁকে যাওয়ার বিরুদ্ধে বাধা
 প্রদানের ক্ষমতা নির্দেশ করে ।

MOMENT OF INERTIA

মোমেন্ট অব ইনার্শিয়ার গাণিতিক সমাধান

আয়তক্ষেত্রের মোমেন্ট অব ইনার্শিয়া নির্ণয়ঃ



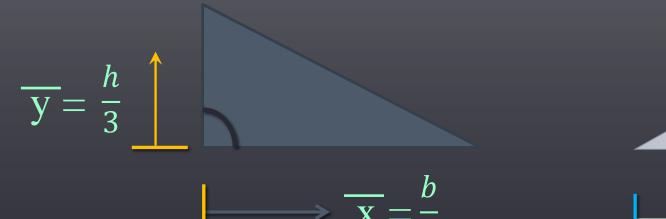
ভরকেন্দ্রের সাপেক্ষে মোমেন্ট অব ইনার্শিয়া

$$Ixx = \frac{bh^3}{12} \qquad Iyy = \frac{hb^3}{12}$$

ভূমির সাপেক্ষে মোমেন্ট অব ইনার্শিয়া

$$Ix = \frac{bh^3}{3}$$

ত্রিভূজের মোমেন্ট অব ইনার্শিয়া



$$\overline{\mathbf{x}} = \frac{2h}{3}$$

Area =
$$\frac{1}{2} \times b \times h$$

ভরকেন্দ্রের সাপেক্ষে মোমেন্ট অব ইনার্শিয়া

$$Ixx = \frac{bh^3}{36} \qquad Iyy = \frac{hb^3}{36}$$

ভূমির সাপেক্ষে মোমেন্ট অব ইনার্শিয়া

$$Ixx = \frac{bh^3}{12}$$

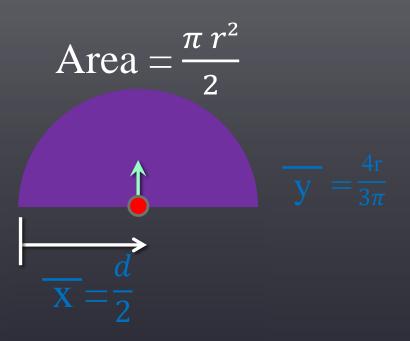
বৃত্তের মোমেন্ট অব ইনার্শিয়া

Area =
$$\frac{\pi d^2}{4}$$
 or πr^2

$$\overline{x} = \overline{y} = \frac{d}{2}$$

ভরকেন্দ্রের সাপেক্ষে মোমেন্ট অব ইনার্শিয়া

$$Ixx = Iyy = \frac{\pi D^4}{64}$$



ভরকেন্দ্রের সাপেক্ষে মোমেন্ট অব ইনার্শিয়া

Ixx =0.11
$$r^4$$
 Iyy = $\frac{\pi D^4}{128}$

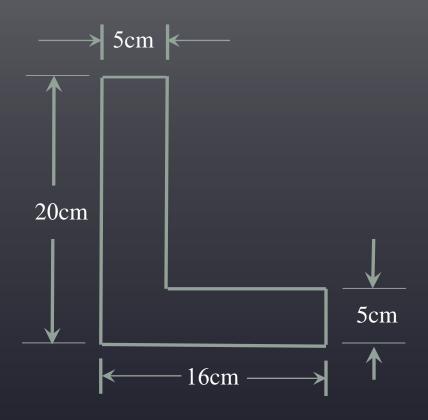
সমান্তরাল অক্ষীয় উপপাদ্য

যেকোন একটিঅক্ষেরসাপেক্ষেকোনক্ষেত্রেরমোমেন্টঅবইনার্শিয়া ঐ
 অক্ষেরসমান্তরালসেন্ট্রয়ডালঅক্ষেরসাপেক্ষেমোমেন্টঅবইনার্শিয়াএবংউক্তক্ষেত্রেরক্ষেত্রফলএবং ঐ
 দুটিসমান্তরালঅক্ষেরমধ্যবর্তীদূরত্বেরবর্গেরগুণফলেরযোগফলেরসমানহবে ।

ভরকেন্দ্রগামীঅক্ষেরসমান্তরালঅক্ষেমোমেন্টঅবইনার্শিয়া=
ভরকেন্দ্রগামীঅক্ষেমোমেন্টঅবইনার্শিয়া + ক্ষেত্রফল × (দুইসমান্তরালঅক্ষেরমধ্যবর্তীলম্ব দুরত্ব)²।

এই অধ্যায়ের প্রয়োজনীয় সূতাবলি :			
िव	ভারকেন্দ্র (X, Y)	ক্ষেত্রফল (A)	মোমেন্ট অব ইনার্শিয়া (M.I)
C d A A-b-	<u>b</u> , <u>d</u>	bd	$I_{\text{cgx}} = \frac{bd^3}{12}, I_{\text{cgy}} = \frac{db^3}{12}$ $I_{\text{AB}} = \frac{bd^3}{3}, I_{\text{AC}} = \frac{db^3}{3}$
T C B	$\frac{b}{3}, \frac{h}{3}$ (A বিন্দু হতে) $\frac{2b}{3}, \frac{2h}{3}$ (B ও C বিন্দু হতে)	$\frac{1}{2}$ bh	$I_{\text{cgx}} = \frac{bh^3}{36}, I_{\text{egy}} = \frac{hb^3}{36}$ $I_{\text{AB}} = \frac{bh^3}{12}, I_{\text{AC}} = \frac{hb^3}{12}$
	$\frac{b}{3}, \frac{d}{2}$	$\frac{1}{2}$ bd	$I_{\text{cgx}} = \frac{bd^3}{48}, I_{\text{cgx}} = \frac{db^3}{36}$
r+D+I	$\frac{\left(\frac{D}{2}, \frac{D}{2}\right)}{\text{or (r, r)}}$	$\frac{\pi}{4} D^2$ or, πr^2	$I_{cgx} = I_{cgy} = \frac{\pi D^4}{64} = \frac{\pi r^4}{4}$ $I_C = \frac{5\pi D^4}{64}$
$ \begin{array}{c} F \\ C \\ A \\ E \\ D \\ E \end{array} $	(r, 0.424r) বেজ থেকে (r, 0.576r) C থেকে	$\frac{\pi r^2}{2}$ or, $\frac{\pi}{2 \times 4}$ D ²	$I_{cgx} = 0.11r^4$ $I_{cgy} = I_{AB} = \frac{\pi D^4}{128}$ $I_{FF} = 0.63 r^4$
R+I	(0.424R, 0.424R [সমকোণ হতে] (0.576R, 0.576R)	$\frac{\pi R^2}{4}$ or, $\frac{\pi}{4 \times 4}$ D ²	$I_{\text{cgx}} = I_{\text{cgy}} = \frac{0.11R^4}{2}$

চিত্রের L সেকশনটির সেন্ট্রয়েডগামী X ও Y অক্ষের সাপেক্ষে মোমেন্ট অব ইনার্শিয়া নির্ণয় কর ।



$$a_1 = 20 \times 5 = 100 \text{ cm}^2$$

$$a_2 = 11 \times 5 = 55 \text{ cm}^2$$

$$y_1 = \frac{20}{2} = 10 \text{ cm}$$

$$\overline{X} = \frac{a_1 X_1 + a_2 X_2}{a_1 + a_2}$$

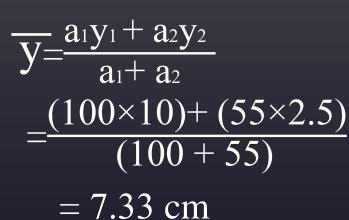
$$=\frac{(100\times2.5)+(55\times10.5)}{(100+55)}$$

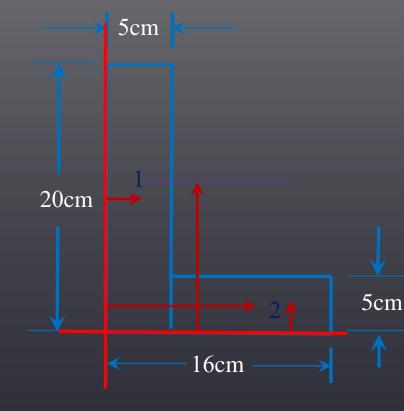
$$= 5.34 \text{ cm}$$

$$a_1 = 20 \times 5 = 100 \text{ cm}^2$$
 $X_1 = \frac{5}{2} = 2.5 \text{ cm}$

$$X_2 = 5 + \frac{11}{2} = 10.5 \text{ cm}$$

$$y_2 = \frac{5}{2} = 2.5 \text{ cm}$$





$$a_{1}=100 \text{ cm}^{2} \qquad y_{1}=10 \text{ cm}$$

$$a_{2}=55 \text{ cm}^{2} \qquad y_{2}=2.5 \text{ cm}$$

$$\overline{y}=7.33$$

$$1xx = (I_{G_{1}}+A_{1}h_{1}^{2}) + (I_{G_{2}}+A_{2}h_{2}^{2})$$

$$= \frac{b_{1}h_{1}^{3}}{12} + A_{1}(y-y_{1})^{2} + \frac{b_{2}h_{2}^{3}}{12} + A_{2}(y-y_{2})^{2}$$

$$= \frac{5\times(20)^{3}}{12} + 100\times(7.33-10)^{2} + \frac{11\times(5)^{3}}{12} + 55\times(7.33-2.5)^{2}$$

 $= 5443.90 \text{ cm}^4$

5cm

 $y_1 = 10 \text{ cm}$

5cm

$$a_1 = 100 \text{ cm}^2$$

$$X_1 = 2.5$$
 cm

$$a_2 = 55 \text{ cm}^2$$

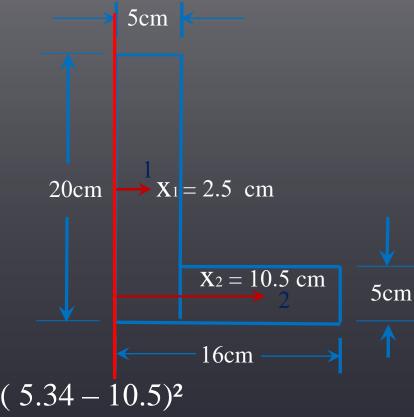
$$X_2 = 10.5 \text{ cm}$$

$$\overline{X} = 5.34$$

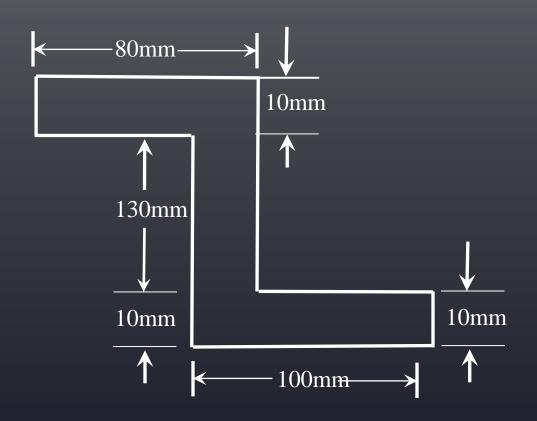
$$Iyy = \frac{h_1b_1^3}{12} + A_1(x-x_1)^2 + \frac{h_2b_2^3}{12} + A_2(x-x_2)^2$$

$$= \frac{20 \times (5)^3}{12} + 100 \times (5.34-2.5)^2 + \frac{5 \times (11)^3}{12} + 55 \times (5.34-10.5)^2$$

$$= 3033.88 \text{ cm}^4$$



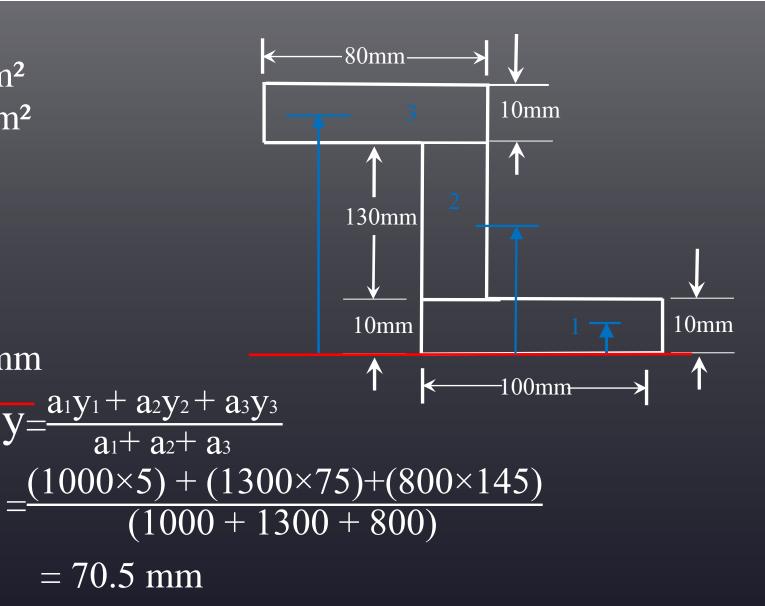
চিত্রের Z সেকশনটির আনুভূমিক ভরকেন্দ্রগামী অক্ষের সাপেক্ষে মোমেন্ট অব ইনার্শিয়া নির্ণয় কর ।



$$a_1 = 100 \times 10 = 1000 \text{ mm}^2$$

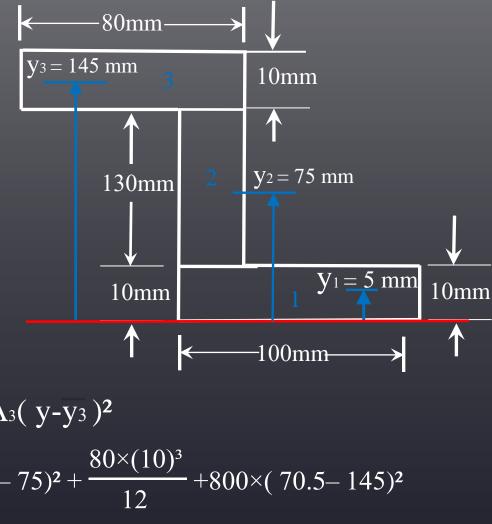
 $a_2 = 130 \times 10 = 1300 \text{ mm}^2$
 $a_3 = 80 \times 10 = 800 \text{ mm}^2$
 $y_1 = \frac{10}{2} = 5 \text{mm}$
 $y_2 = 10 + \frac{130}{2} = 75 \text{ mm}$
 $y_3 = 10 + 130 + \frac{10}{2} = 145 \text{ mm}$

= 70.5 mm



$$a_1 = 1000 \text{ mm}^2$$
 $y_1 = 5 \text{ mm}$
 $a_2 = 1300 \text{ mm}^2$ $y_2 = 75 \text{ mm}$
 $a_3 = 800 \text{ mm}^2$ $y_3 = 145 \text{ mm}$
 $y_4 = 70.5 \text{ mm}$

 $I_{XX} = (I_{G_1} + A_1h_1^2) + (I_{G_2} + A_2h_2^2) + (I_{G_3} + A_3h_3^2)$

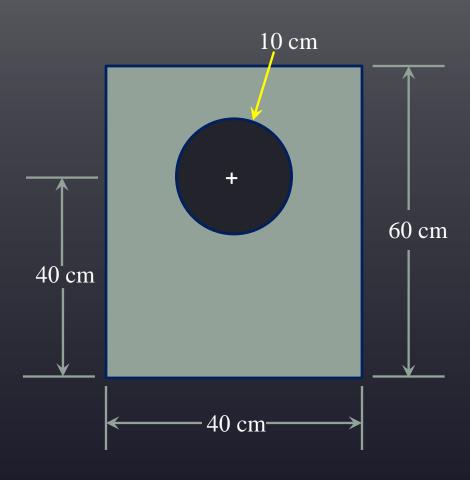


$$= \frac{b_1h_1^3}{12} + A_1(y-y_1)^2 + \frac{b_2h_2^3}{12} + A_2(y-y_2)^2 + \frac{b_3h_3^3}{12} + A_3(y-y_3)^2$$

$$= \frac{100\times(10)^3}{12} + 1000\times(70.5-5)^2 + \frac{10\times(130)^3}{12} + 1300\times(70.5-75)^2 + \frac{80\times(10)^3}{12} + 800\times(70.5-145)^2$$

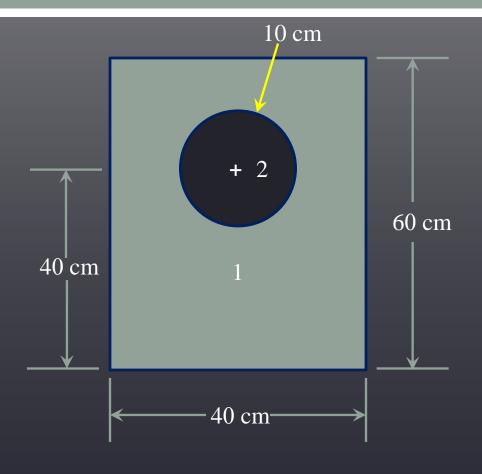
$$= 1060.26\times10^4 \text{ mm}^4$$

চিত্রের সেকশনটির X-X অক্ষের সাপেক্ষে মোমেন্ট অব ইনার্শিয়া নির্ণয় কর ।



$$a_1 = 60 \times 40 = 2400 \text{ cm}^2$$
 $a_2 = \frac{\pi \times (10)^2}{4} = 78.54 \text{cm}^2$
 $y_1 = \frac{60}{2} = 30 \text{ cm}$ $y_2 = 40 \text{ cm}$

$$\frac{y}{y} = \frac{a_1y_1 - a_2y_2}{a_1 - a_2} \\
= \frac{(2400 \times 30) - (78.54 \times 40)}{(2400 - 78.54)} \\
= 29.66 \text{ cm}$$



$$a_1 = 2400 \text{ cm}^2$$
 $y_1 = 30 \text{ cm}$
 $a_2 = 78.54 \text{cm}^2$ $y_2 = 40 \text{ cm}$
 $\overline{y} = 29.66 \text{ cm}$

$$Ixx = (I_{G_1} + A_1h_1^2) - (I_{G_2} + A_2h_2^2)$$

$$= \frac{b_1h_1^3}{12} + A_1(y-y_1)^2 - \frac{\pi D^4}{64} - A_2(y-y_2)^2$$

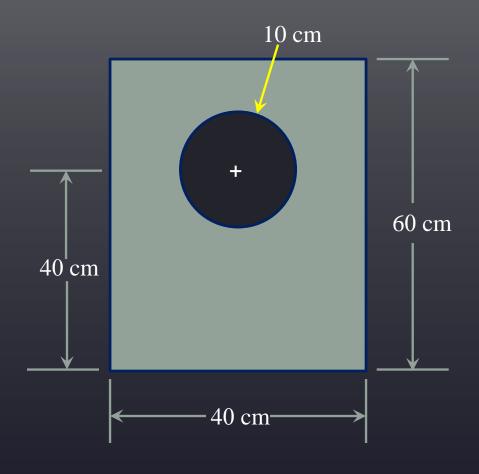
$$= \frac{40 \times (60)^3}{12} + 2400 \times (29.66 - 30)^2 - \frac{\pi \times 10^4}{64} - 78.54 \times (29.66 - 40)^2$$

$$= 711389.42 \text{ cm}^4$$

10 cm

60 cm

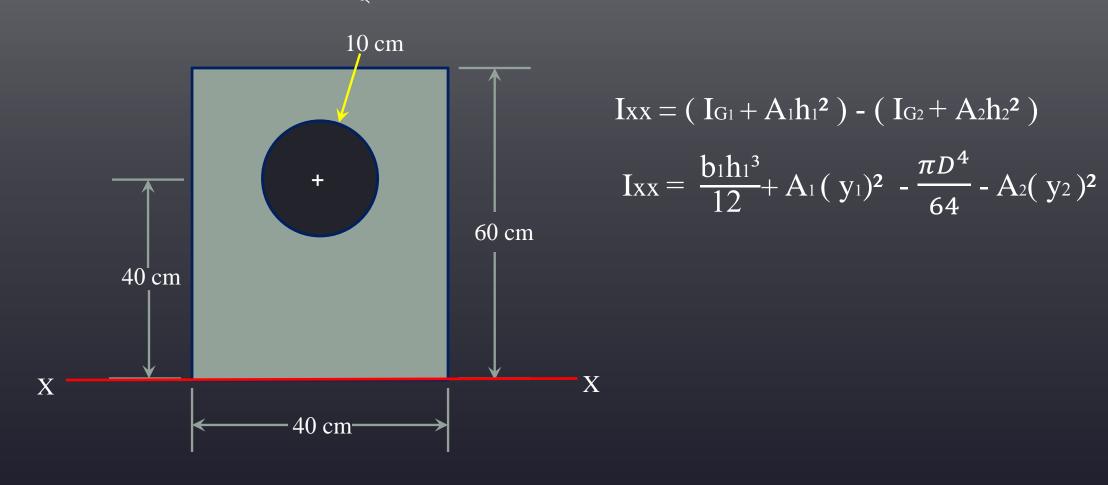
চিত্রের সেকশনটির X-X অক্ষের সাপেক্ষে মোমেন্ট অব ইনার্শিয়া নির্ণয় কর ।



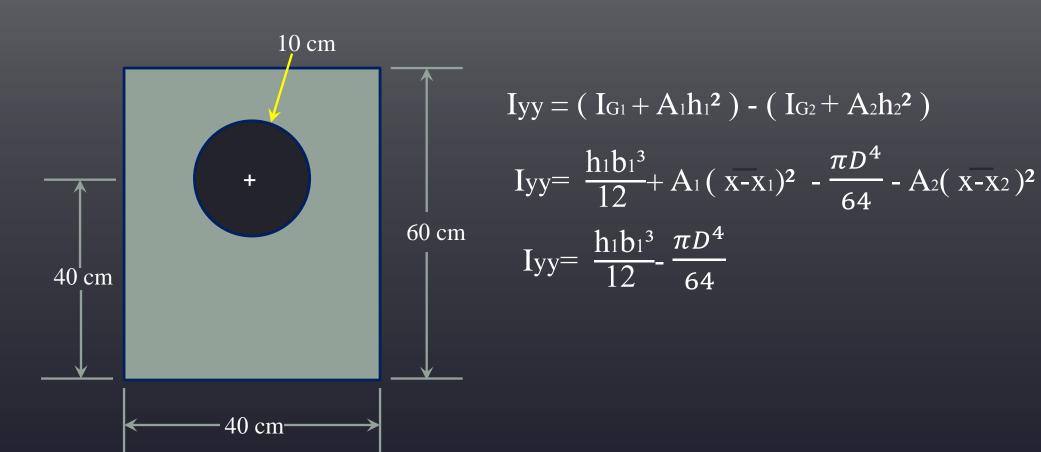
$$Ixx = (I_{G_1} + A_1h_1^2) - (I_{G_2} + A_2h_2^2)$$

$$I_{XX} = \frac{b_1 h_1^3}{12} + A_1 (y-y_1)^2 - \frac{\pi D^4}{64} - A_2 (y-y_2)^2$$

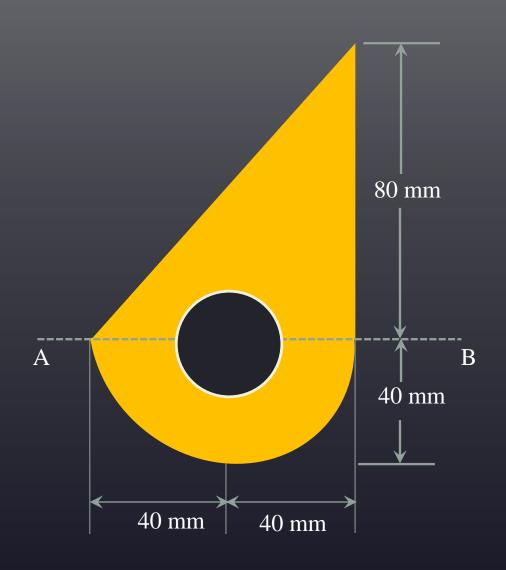
চিত্রের সেকশনটির ভূমি বরাবর X - X অক্ষের সাপেক্ষে মোমেন্ট অব ইনার্শিয়া নির্ণয় কর ।

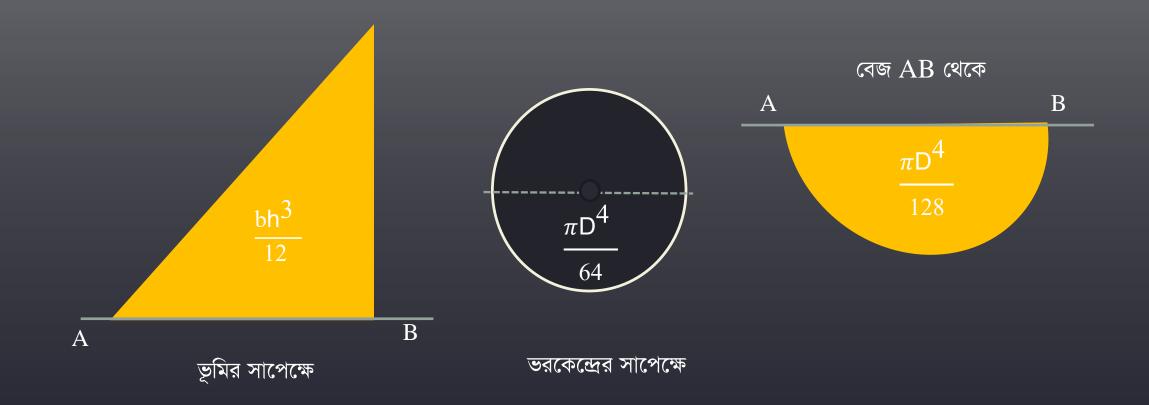


চিত্রের সেকশনটির Y-Y অক্ষের সাপেক্ষে মোমেন্ট অব ইনার্শিয়া নির্ণয় কর ।



চিত্রের ক্ষেত্রটির AB রেখা বরাবর মোমেন্ট অব ইনার্শিয়া নির্ণয় কর ।

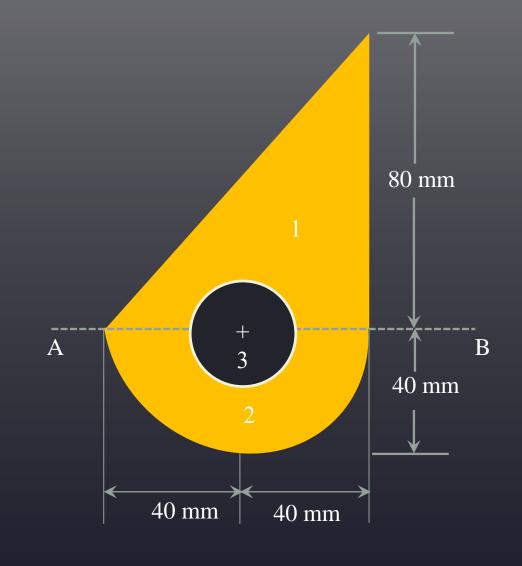




$$I_{AB} = \frac{b_1 h_1^3}{12} + \frac{\pi D_2^4}{128} - \frac{\pi D_3^4}{64}$$

$$= \frac{80 \times (80)^3}{12} + \frac{\pi \times (80)^4}{128} - \frac{\pi \times (40)^4}{64}$$

$$= 4292979 \text{ mm}^4$$

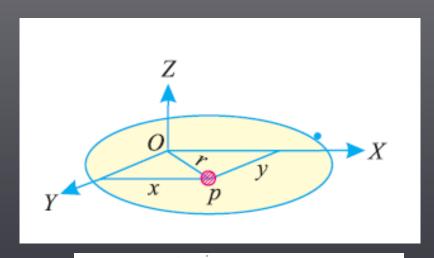


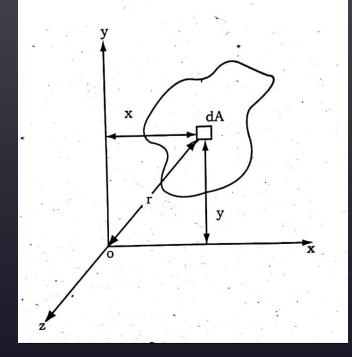
মনে করি, O বিন্দু হতে r দূরত্বে ক্ষুদ্র ক্ষেত্রফল dA dA ক্ষেত্রের স্থানাঙ্ক x এবং y

চিত্রের জ্যামিতিক ক্ষেত্র হতে আমরা পাই, $r^2=x^2+y^2$

X অক্ষ হতে dA ক্ষুদ্র ক্ষেত্রটির মোমেন্ট অব ইনার্শিয়া, $Ixx = y^2dA$ এবং Y অক্ষ হতে dA ক্ষুদ্র ক্ষেত্রটির মোমেন্ট অব ইনার্শিয়া, $Iyy = x^2dA$ অতএব, $Izz = r^2dA$

কোন ক্ষেত্রের উলম্ব অক্ষ বরাবর গৃহীত মোমেন্ট অব ইনার্শিয়াকে পোলার মোমেন্ট অব ইনার্শিয়া বলে । একে J দ্বারা সূচিত করা হয় । $Iz = J = \int r^2 dA$ $= \int (x^2 + y^2) dA$ $= \int x^2 dA + \int y^2 dA$ = Ixx + Iyy





আলোচ্য বিষয়

দ্রীসের সাপোর্ট প্রতিক্রিয়া

ট্রাস

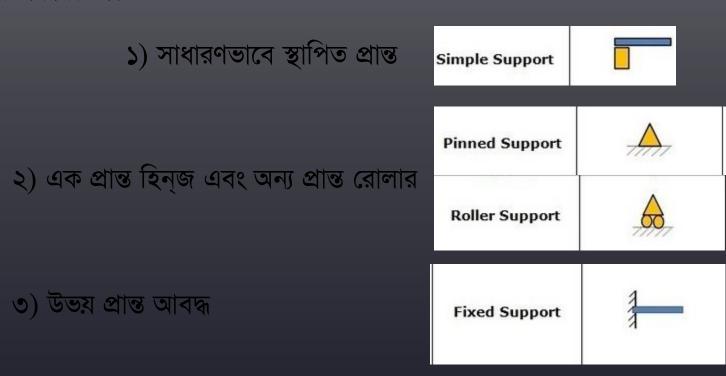
কতগুলো মেম্বারকে রিভেট অথবা ওয়েন্ডিং দ্বারা সংযুক্ত করে ত্রিভুজ আকৃতির যে ফ্রেম তৈরি করা হয় তাকে দ্রাস বা ফ্রেম বলে। দ্রীশ প্রধানত দুই প্রকার।

- ক) রুফ ট্রাশ খ) বিজ ট্রাশ

কাঠামোতে ব্যবহৃত বাহুর সংখ্যার উপর ভিত্তি করে দুই ভাগে ভাগ করা হয়

- ১) পারফেক্ট ফ্রেম
- ২) ইমপারফেক্ট ফ্রেম
- ১) পারফেক্ট ফ্রেমঃ লোড প্রয়োগে আকৃতির কোন পরিবর্তন ব্যতীত যদি ট্রাসটি সাম্যবস্থা বিরাজ করে এবং সাম্যবস্থার সূত্রের সাহায্যে মেম্বার গুলোর বল নির্ণয় করা যায় তাকে পারফেক্ট ফ্রেম বলে ।
- অন্য ভাবে ট্রাসে ব্যবহৃত মেম্বারের সংখ্যা n=2j -3 সংখ্যক হলে ওই ট্রাস্টকে পূর্ণাঙ্গ বা পারফেক্ট ফ্রেম বলে । এখানে, n= ট্রাসের মেম্বার সংখ্যা j= ট্রাসের জয়েন্ট সংখ্যা
- ২) ইমপারফেক্ট ফ্রেমঃ মেম্বার গুলোর বল সাম্যবস্থার সূত্রের সাহায্যে নির্ণয় করা যায় না অথবা ব্যবহৃত মেম্বারের সংখ্যা n=2j –3 অপেক্ষা কম বা বেশি হলে তাকে অপূর্ণাঙ্গ বা ইম পারফেক্ট ফ্রেম বলে ।

প্রান্ত সাপোর্ট এর প্রকারভেদঃ



টাইঃ ট্রাসের যে মেম্বার গুলো টানা বল বহন করে তাদেরকে টাই বলে ।

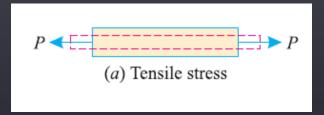
স্ট্রাটঃ ট্রাসের যে মেম্বার গুলো চাপা বহন করে তাদেরকে স্ট্রাট বলে।

কাঠামো বা ট্রাসের পীড়ন

বাহ্যিক বল প্রয়োগে মেম্বারের অভ্যন্তরে একক ক্ষেত্রের উপর যে প্রতিক্রিয়া বলের সৃষ্টি হয়, তাকে মেম্বারের স্ট্রেস বা পীড়ন বলে ।

> ট্রাসের প্রতিটি মেম্বারে তীর চিহ্ন দারা স্ট্রেসকে উপস্থাপন করা হয় । পীড়ন দুই প্রকার ।

> > ১) টানা পীড়ন (Tensile Stress)

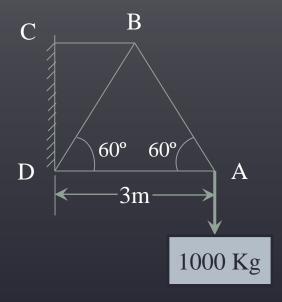


চাপা পাড়ন (Compressive Stress)

ফ্রেম বা ট্রাস মেম্বারের বল নির্ণয়:-

- ১) গাণিতিক বিশ্লেষণ পদ্ধতি (Analytical method)
- এই পদ্ধতি আবার ২ প্রকারঃ
- i) সেকশন বা মোমেন্ট পদ্ধতি
- ii) জয়েন্ট পদ্ধতি
- ২) লেখচিত্র পদ্ধতি (Graphical Method)

চিত্রে প্রদর্শিত ট্রাসটির AB,AD ও BD বাহুর উপর অর্পিত বলের মান ও প্রকৃতি নির্ণয় কর ।



Joint Method

For Joint A

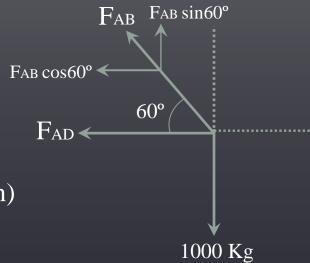
$$+\uparrow \sum Fy = 0$$

$$\Rightarrow$$
 Fab sin 60° - 1000 = 0

$$\Rightarrow$$
 Fab sin 60° = 1000

$$\Rightarrow$$
 Fab = $\frac{1000}{\sin 60^{\circ}}$

 \therefore Fab = 1154.70 kg (Tension)



$$\sum \mathbf{F} \mathbf{x} = \mathbf{0}$$

$$\Rightarrow$$
 - Fad - Fab $\cos 60^{\circ} = 0$

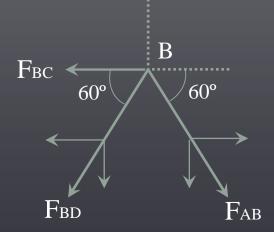
$$\Rightarrow$$
 Fad = - Fab cos 60°

$$\Rightarrow$$
 F_{AD} = - 1154.70 cos60°

$$\Rightarrow$$
 Fad = - 577.35 kg

$$\therefore$$
 F_{AD} = 577.35 kg (Compression)

For Joint B



$$+\uparrow \sum Fy = 0$$

$$\Rightarrow$$
 - F_{BD} sin60° - F_{AB} sin60° = 0

$$\Rightarrow$$
 - Fbd $\sin 60^{\circ}$ = Fab $\sin 60^{\circ}$

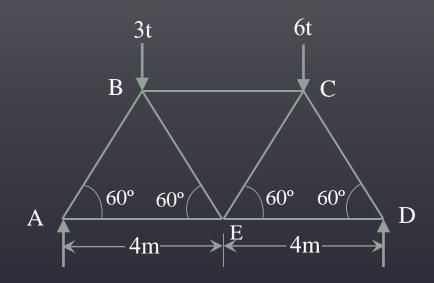
$$\Rightarrow$$
 - F_{BD} sin60° = 1154.70 sin60°

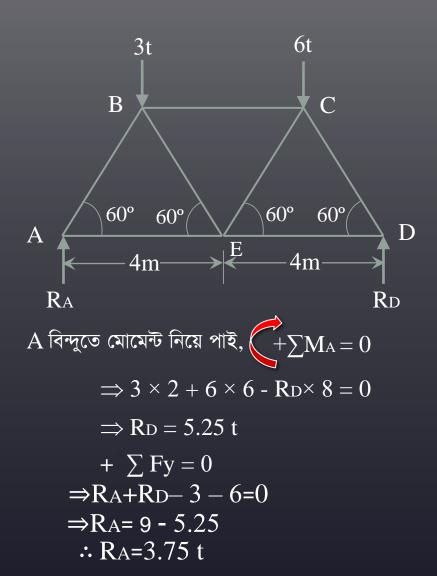
⇒ - F_{BD}
$$\sin 60^{\circ} = 1154.70 \sin 60^{\circ}$$

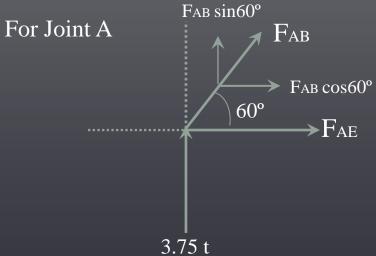
⇒ - F_{BD} = $\frac{1154.70 \sin 60^{\circ}}{\sin 60^{\circ}}$

$$\therefore$$
 F_{BD}= - 1154.70 kg = - 1154.70 kg (Compression)

চিত্রানুযায়ী ট্রাসটির বিভিন্ন বলের মান নির্ণয় কর ।







$$+\sum V_F = 0$$

$$\Rightarrow F_{AB} \sin 60^\circ + 3.75 = 0$$

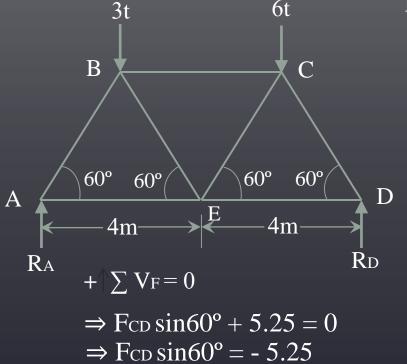
$$\Rightarrow$$
 Fab sin60° = -3.75

$$\Rightarrow F_{AB} = \frac{-3.75}{\sin 60^{\circ}}$$

$$\therefore$$
 F_{AB}=- 4.33 t (Compression)

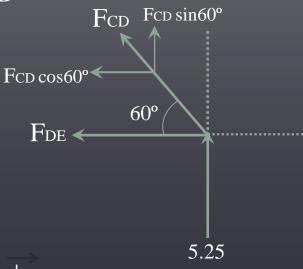
+

$$\Sigma$$
 H_F= 0
⇒ F_{AB} cos 60° + F_{AE}= 0
⇒ F_{AE}= - F_{AB} cos 60°
⇒ F_{AE}= - (-4.33)cos 60°
∴ F_{AE}=2.165 t (Tension)



 $\Rightarrow F_{CD} = \frac{-5.25}{\sin 60^{\circ}}$

 \therefore Fcd=- 6.06 t (Compression)

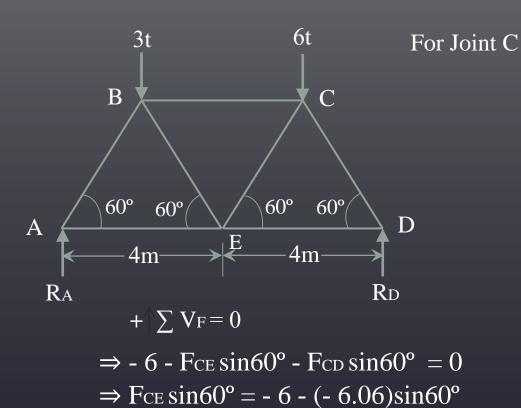


$$\sum^{+} H_F = 0$$

$$\Rightarrow$$
 - Fcd cos 60° - FdE= 0

$$\Rightarrow$$
 FDE= - (-6.06)cos 60°

$$\therefore$$
 F_{DE}=3.03 t (Tension)



 $\Rightarrow \overline{\text{Fce sin}60^{\circ}} = -0.75$

 $\therefore \text{Fce} = -0.87 \text{ t}$

(Compression)

 $\Rightarrow F_{CE} = \frac{-0.75}{\sin 60^{\circ}}$

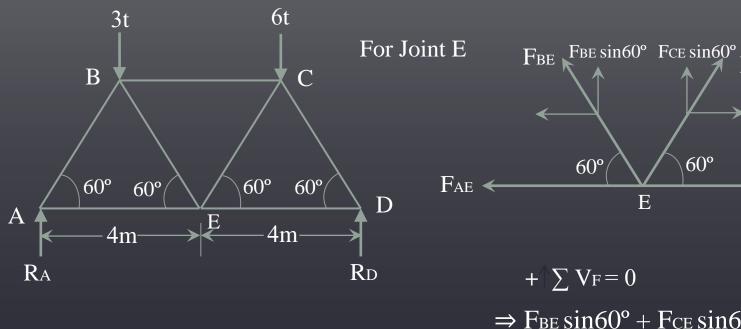
$$\sum_{\bullet}^{\bullet} H_{F} = 0$$

$$\Rightarrow -F_{BC} -F_{CE} \cos 60^{\circ} + F_{CD} \cos 60^{\circ} = 0$$

$$\Rightarrow F_{BC} = -F_{CE} \cos 60^{\circ} + F_{CD} \cos 60^{\circ} = 0$$

$$\Rightarrow F_{BC} = -(-0.87) \cos 60^{\circ} + (-6.06) \cos 60^{\circ} = 0$$

$$\therefore F_{BC} = -2.6 \text{ t} \quad \text{(Compression)}$$



AE
$$\begin{array}{c}
60^{\circ} & 60^{\circ} \\
E & F_{DE}
\end{array}$$

$$+ \sum V_{F} = 0$$

$$\Rightarrow F_{BE} \sin 60^{\circ} + F_{CE} \sin 60^{\circ} = 0$$

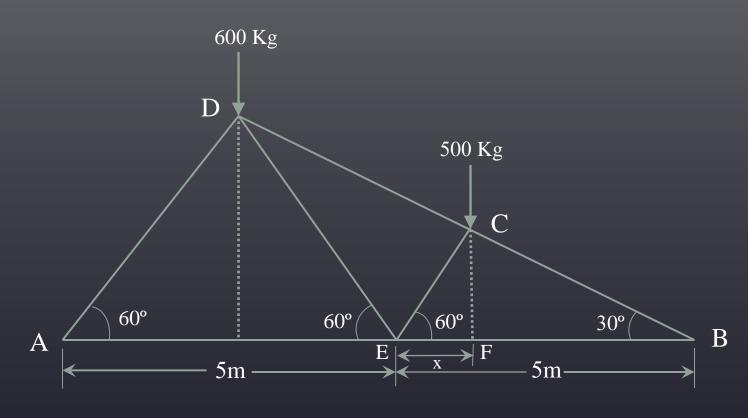
$$\Rightarrow F_{BE} = -F_{CE}$$

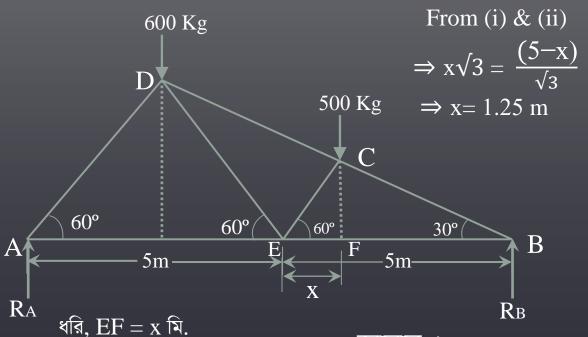
$$\Rightarrow F_{BE} = -(-0.87)$$

$$\therefore F_{BE} = 0.87 t \quad (Tension)$$

Fce

চিত্রের ট্রাসটির বাহুগুলোর বলের পরিমাণ ও প্রকৃতি নির্ণয় কর ।





ধরি,
$$EF = x$$
 মি

∴ FB = (5-x) m

$$\Delta$$
CEF- \triangleleft
 $\tan 60^{\circ} = \frac{CF}{EF}$
 $\Rightarrow \sqrt{3} = \frac{CF}{x}$
 $\Rightarrow CF = x\sqrt{3}$ (i)

আবার, ABCF-এ

$$\tan 30^{\circ} = \frac{CF}{FB}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{CF}{(5-x)}$$

$$\Rightarrow CF = \frac{(5-x)}{\sqrt{3}}$$
 (ii)

 $\stackrel{ ext{ iny A}}{=}$ বিন্দুতে মোমেন্ট নিয়ে পাই, $\stackrel{ ext{ iny F}}{=} + \sum M_{ ext{ iny A}} = 0$

$$\Rightarrow$$
 600 × 2.5 + 500 × 6.25 - R_B× 10 = 0

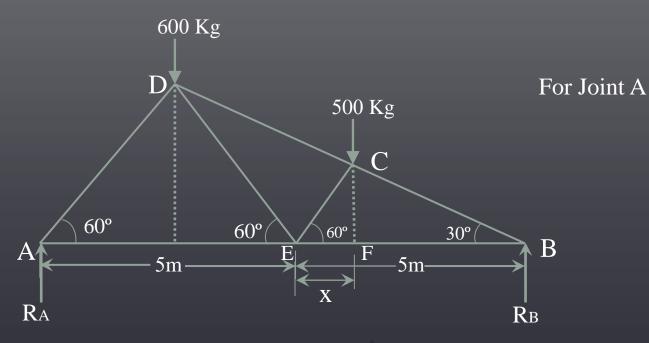
$$\Rightarrow$$
 R_B× 10 = 4625

$$+\int \nabla V_{\rm F} = 0$$

$$\Rightarrow$$
RA+RB- 600 -500 =0

$$\Rightarrow$$
RA= 1100-RB

$$\Rightarrow$$
RA= 1100–462.5



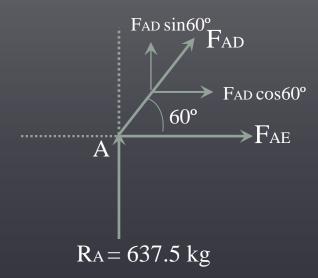
$$+\sum V_F=0$$

$$\Rightarrow$$
 Fad $\sin 60^{\circ} + 637.5 = 0$

$$\Rightarrow$$
 Fad $\sin 60^{\circ} = -637.5$

$$\Rightarrow F_{AD} = \frac{-637.5}{\sin 60^{\circ}}$$

∴
$$F_{AD} = -736.12 \text{ kg}$$
 (Compression)



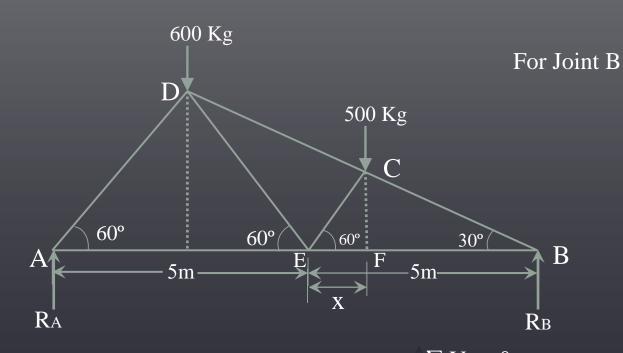
$$\sum_{F} H_F = 0$$

$$\Rightarrow$$
 Fad cos 60° + Fae= 0

$$\Rightarrow$$
 Fae= - Fad $\cos 60^{\circ}$

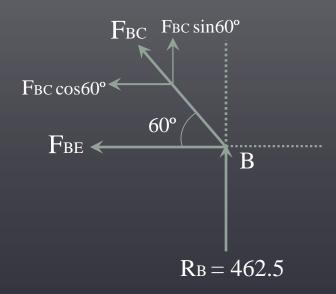
$$\Rightarrow$$
 Fae= - (-736.12)cos 60°

$$\therefore$$
 Fae=368.06 kg (Tension)

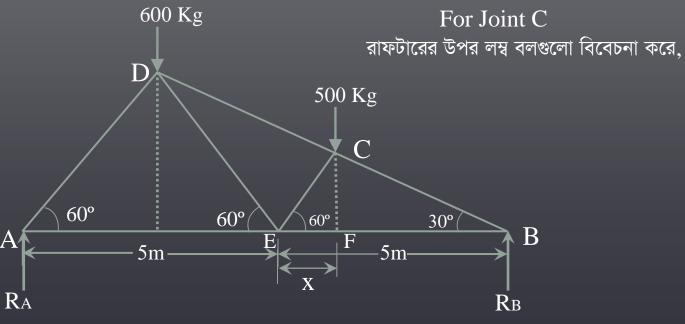


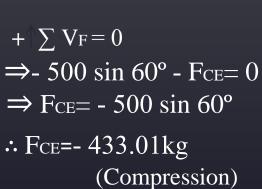
+
$$\int V_F = 0$$

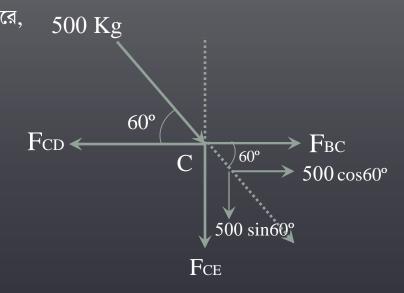
⇒ F_{BC} sin30° + 462.5 = 0
⇒ F_{BC} sin30° = -462.5
⇒ F_{BC} = $\frac{-462.5}{\sin 30^\circ}$
∴ F_{BC} = -925 kg
(Compression)



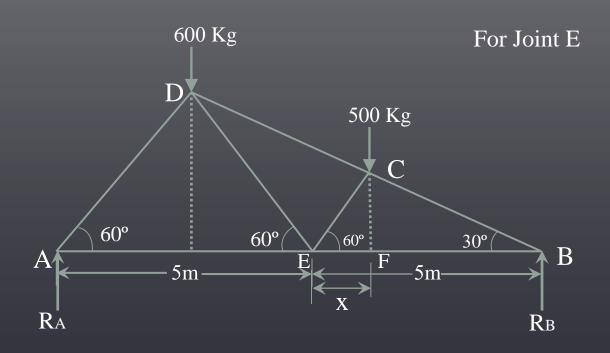
$$_{+}$$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$
 $_{-}$

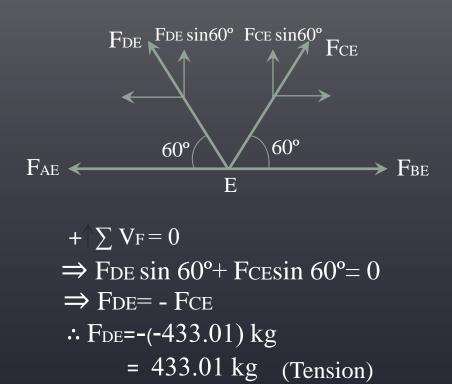






(Compression)





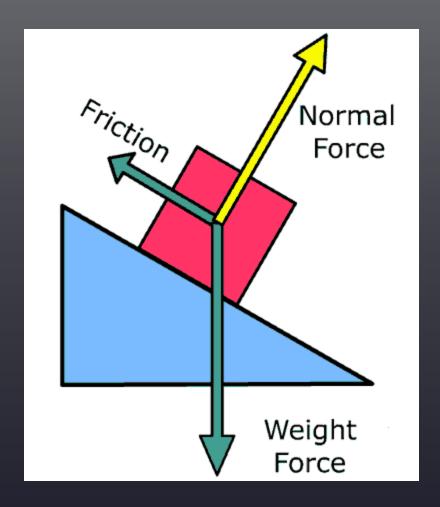
আলোচ্য বিষয়

ঘর্ষণের নীতি ও প্রয়োগ

ঘষ্ণ(Friction)

যখন কোন একটি বস্তু অপর একটি সমতল বস্তর উপর দিয়ে চলে অথবা চলতে চায় তখন দুই বস্তর স্পর্শ তল বরাবর গতির বিপরীত দিকে যে প্রতিরোধী বলের সৃষ্টি হয় তাকে ঘর্ষণ বা ঘর্ষণ বল বলে ।

এই ঘর্ষণ বলকে F দারা প্রকাশ করা হয় ।



ঘষণ বল দুই প্রকার । যথা :

- ১। স্তিতি ঘর্ষণ এবং
- ২। গতি ঘর্ষণ
- ১। স্থিতি ঘর্ষণঃ কোন স্থির বস্তুর উপর বল প্রয়োগ করলে বস্তটি গতিশীল হওয়ার পূর্ব মুহুর্ত পর্যন্ত স্পর্শ তল বরাবর যে বাধা বলের সৃষ্টি হয় তাকে স্থিতি ঘর্ষণ বল বলে ।
- ২। গতি ঘর্ষণঃ কোন গতিশীল বস্তুর উপর গতির বিপরীত দিকে স্পর্শ তল বরাবর যে বাধা বলের সৃষ্টি হয় তাকে গতি ঘর্ষণ বল বলে।

স্থিতি ঘর্ষণের বৈশিষ্ট্য:

- (১) বস্তু যে দিকে চলার উপক্রম হয় ঘর্ষণ বল তার বিপরীত দিকে কাজ করে ।
- (২) ঘর্ষণ বলের মান বস্তুর উপর প্রযুক্ত বলের সমান।
- (৩) স্পর্শ তলের উপর লম্ব প্রতিক্রিয়া বল (N) এবং স্থিতি ঘর্ষণের সর্বোচ্চ মানের অনুপাত সর্বদা ধ্রুব । অর্থাৎ, $\frac{F}{N}$ ধ্রুব ।
- (৪) স্থিতি ঘর্ষণের মান স্পর্শ তলের ক্ষেত্রফলের উপর নির্ভর করে না।
- (৫) ঘর্ষণ বল তলদেশের মসৃণতার উপর নির্ভরশীল।

গতি ঘর্ষণের বৈশিষ্ট্য :

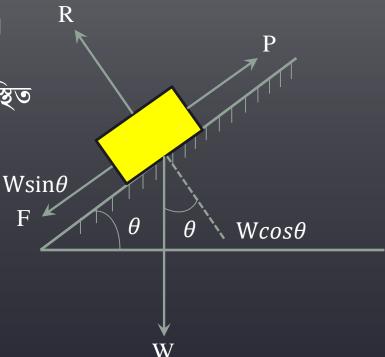
- (ক) বস্তু যে দিকে চলে ঘূষ্ণ বল তার বিপরীত দিকে কাজ করে।
- (খ) গতি ঘর্ষণ বল (F) এবং স্পর্শ তলের উপর লম্ব প্রতিক্রিয়া বলের (N) অনুপাতের মান ধ্রুব সংখ্যা । তবে এটি সর্বদাই সীমিত ঘর্ষণের মানের একটু কম হয় । গাণিতিকভাবে, F/N= ধ্রুব সংখ্যা।
- 🔹 (গ) মধ্যম গতির জন্য গতি ঘর্ষণের মান ধ্রুব থাকে। তবে গতি বেড়ে গেলে এই মান সামান্য কমে যায় ।
- (ঘ) গতি ঘর্ষণের মান স্পর্শ তলের মস্ণতার উপর নির্ভর করে ।
- (ঙ) গতি ঘর্ষণের মান স্পর্শ তলের ক্ষেত্রফলের উপর নির্ভরশীল নয়। তবে চাপের উপর নির্ভরশীল।
- (চ) ঘর্ষণ বল গতির উপর নির্ভরশীল নয়। অবশ্য অতিরিক্ত গতির ক্ষেত্রে ঘর্ষণের মান হ্রাস পায়।

ঘষ্ণ কোন :

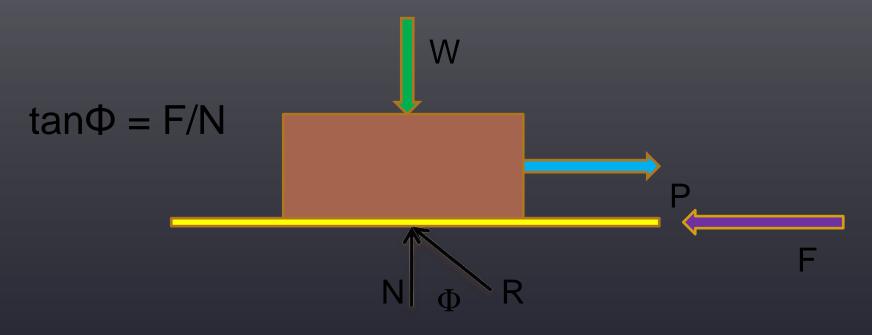
মনে করি, হেলান তলের উপর একটি W ওজনের বস্তু স্থির অবস্থায় আছে ।

একটি হেলানো তলকে অনুভূমিকের সাথে যে কোণে অবস্থান করালে এর উপর অবস্থিত কোন বস্তু সবেমাত্র সচল হয়ে নিচের দিকে পড়ার উপক্রম হয়, এরূপ অবস্থায় হেলানো তলটি অনুভূমিকের সাথে যে কোণ উৎপন্ন করে তাকে ঘর্ষণ কোণ বলে।

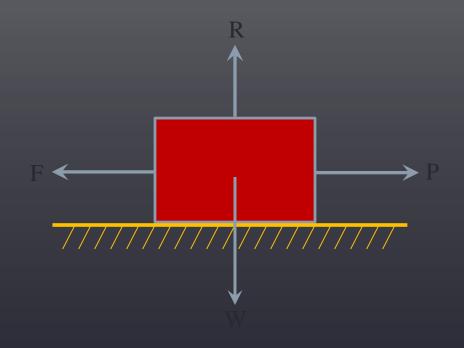
$$\frac{F}{R} = \frac{W \sin \theta}{W \cos \theta} = tan\theta \qquad \therefore \theta = tan^{-1} \frac{F}{R}$$



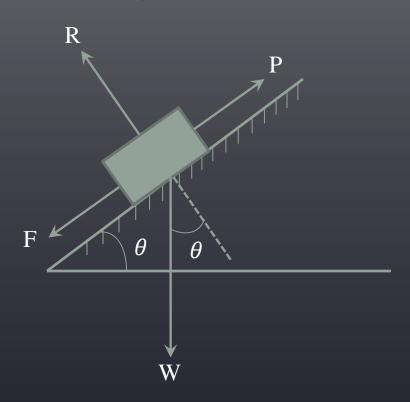
লব্ধি প্রতিক্রিয়া বল এবং লম্ব প্রতিক্রিয়া বলের মধ্যবর্তী কোনকে ঘর্ষণ কোন বলে। একে Φ দারা প্রকাশ করা হয়।



আনুভূমিক তলে অবস্থিত বস্তুর ফ্রি বডি ডায়াগ্রাম

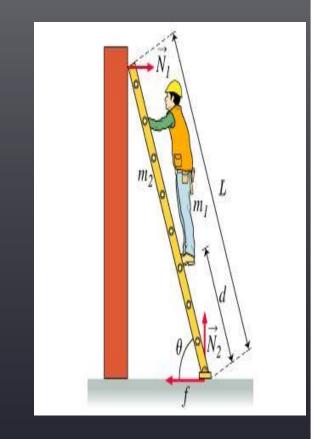


হেলানো তলে অবস্থিত বস্তুর ফ্রি বডি ডায়াগ্রাম

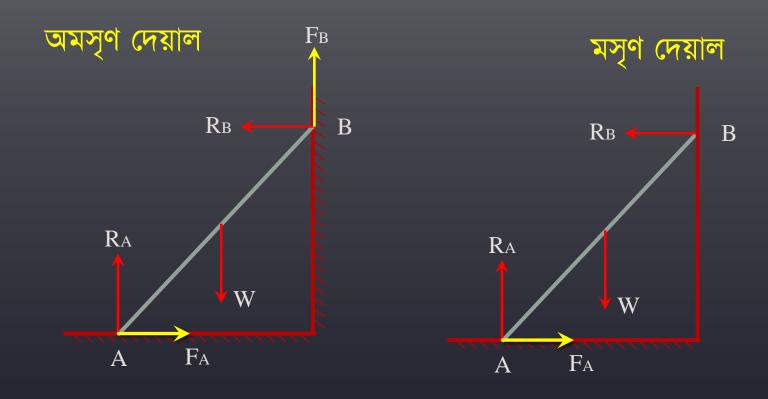


মই

মই এমন একটি বস্তু বা যন্ত্র যার সাহায্যে ছাদ, দেয়াল,গাছ ইত্যাদিতে আরোহণ করা যায়। দুটি সোজা কাঠ, লোহা অথবা দড়ির সাথে আড়াআড়িভাবে কতগুলো দন্ড সংযোগ করে মই তৈরী করা হয়। আড়াআড়ি দণ্ড গুলোকে রাংস (rungs) বলে। এই রাংসগুলো ধাপের মত কাজ করে।



মই এর ফ্রি বডি ডায়াগ্রাম



চিত্রে প্রদত্তবস্তুটিতেবলেরমানকতহলেগতিঅত্যাসন্নহবে ? বস্তুটিরওজন $500~\mathrm{kg}$ এবংঘর্ষণসহগ $\mu=0.25$

বলগুলোকে উলম্বভাবে বিশ্লেষণ করে পাই,
$$+ \uparrow \sum Fy = 0$$
 $\Rightarrow R = 500 + P \sin 45^\circ$ আবার, $F = \mu R$ $\Rightarrow F = 0.25 \ (500 + P \sin 45^\circ)$ (i)

বলগুলোকে আনুভূমিকভাবে বিশ্লেষণ করে পাই, $\sum_{i=1}^{n} \mathsf{F}_{\mathbf{X}} = 0$

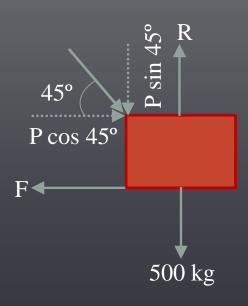
$$\Rightarrow$$
 F =P cos 45° (ii)

সমীকরণ (i) ও (ii) হতে পাই,

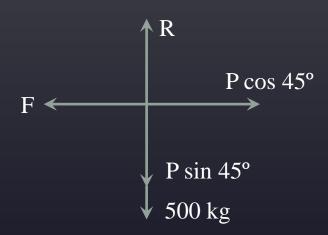
$$\Rightarrow$$
P cos 45° = 0.25 (500 + P sin 45°)

$$\Rightarrow$$
0.707P = 125 + 0.177 P

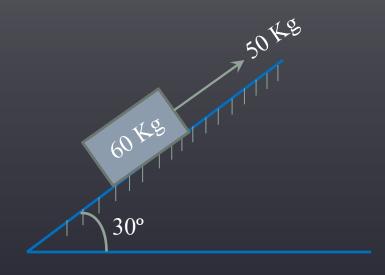
$$\Rightarrow$$
P = $\frac{125}{0.53}$::P = 235.70 Kg Ans.

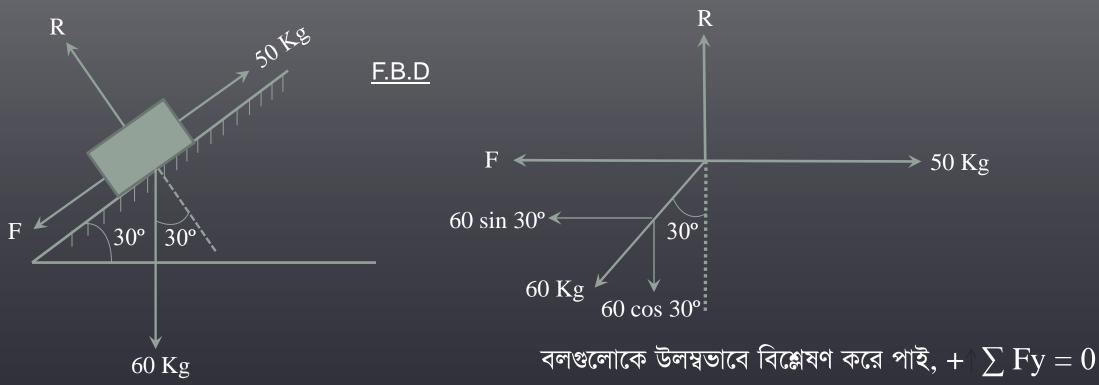


F.B.D



ভূমির সাথে ৩০° কোণে হেলানো একটি তলের উপর ৬০ কেজি ওজনের একটি বাক্সকে ৫০ কেছি হেলানো তলের সাথে সমান্তরালে টানা হলে ঘর্ষণ বল ও ঘর্ষণ সহগ নির্ণয় কর।

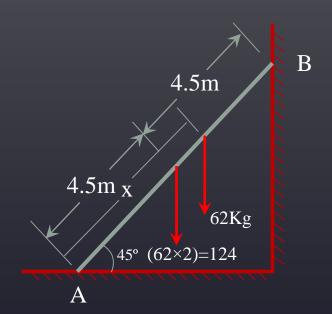




→ 50 Kg

বলগুলোকে আনুভূমিকভাবে বিশ্লেষণ করে পাই,
$$+\sum F_X=0$$
 \Rightarrow R $-60\cos 30^\circ=0$ \Rightarrow R $=51.96$ Kg \Rightarrow F $=50-60\sin 30^\circ$ \Rightarrow R $=51.96$ Kg \Rightarrow P $=50-60\sin 30^\circ$ \Rightarrow R $=51.96$ Kg \Rightarrow P $=50-60\sin 30^\circ$ \Rightarrow R $=51.96$ Kg \Rightarrow $\mu=\frac{F}{R}=\frac{2}{51}$ \therefore F $=20$ Kg Ans. \therefore $\mu=0.38$ Ans.

 $9\mathrm{m}$ লম্বাএকটিমই 45^o কোণেদেয়ালেরসাথেহেলানোঅবস্থায়আছে । মইএবংদেয়ালেরমধ্যকারঘর্ষণসহগ $rac{1}{3}$ ও মইএবংমেঝেরঘর্ষণসহগ $rac{1}{2}$. যদিএকটিলোকযারওজন $62~\mathrm{Kg}$ এবংমইয়েরওজনলোকটিরদিগুণহয়, তবেলোকটিকতউপরেউঠলেমইটিপিছলাতেশুরুকরবে ?



দেওয়া আছে, $\mu_{\text{A}}=rac{1}{2}$ $\mu_{\text{B}}=rac{1}{3}$ লোকের ওজন =62~Kg মইয়ের ওজন =(62 imes2)=124~Kg

$$+ \sum Fx = 0$$

$$\Rightarrow FA - RB = 0$$

$$\Rightarrow \mu_A RA - RB = 0$$

$$\Rightarrow RA = \frac{R_B}{\mu_A}$$

$$+ \sum Fy = 0$$

$$\Rightarrow RA + FB - 62 - 124 = 0$$

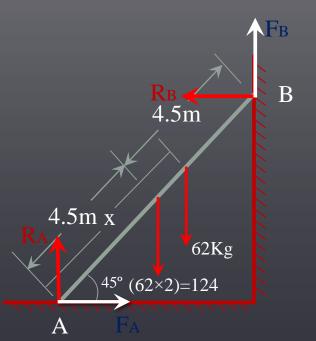
$$\Rightarrow RA + FB = 186$$

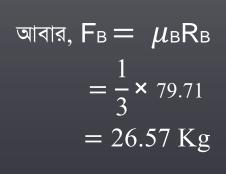
$$\Rightarrow \frac{R_B}{\mu_A} + \mu_B RB = 186$$

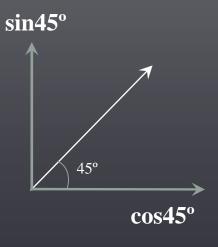
$$\Rightarrow \frac{R_B + \mu_A \cdot \mu_B RB}{\mu_A} = 186$$

$$\Rightarrow RB \left(1 + \frac{1}{2} \cdot \frac{1}{3}\right) = 186 \times \frac{1}{2}$$

$$\Rightarrow RB \left(\frac{6+1}{6}\right) = 93 \quad \therefore RB = \frac{93 \times 6}{7} = 79.71 \text{ Kg}$$







A বিন্দুতে মোমেন্ট নিয়ে পাই,

$$+\sum M_A = 0$$

 $\Rightarrow 124 \times 4.5\cos 45^{\circ} + 62 \times x \cos 45^{\circ} - R_{B} \times 9 \sin 45^{\circ} - F_{B} \times 9 \cos 45^{\circ} = 0$

 \Rightarrow 62× x cos45° =79.71×9 sin45° + 26.57×9 cos45° -124×4.5cos 45°

$$\therefore x = \frac{281.80}{62 \cos 45^{\circ}} = 6.43 \text{m}$$
 (Ans.)

আলোচ্য বিষয়

WORK, POWER AND ENERGY

কাজ,ক্ষমতা ও শক্তি

কাজ:

কোন বস্তুর উপর বল প্রয়োগ করার ফলে যদি বস্তুটির সরন ঘটে তবে তাকে কাজ বলে।

কাজ, W = F x S

का (जर्ब एकक)

পদ্ধতি	পরম একক	অভিকর্ষীয় একক
C.G.S	আগ	গ্রাম-সেমি.
M.K.S	কেজি-মি.	কেজি-মি.
S.I	জুল	নিউটন-মি.

ক্ষমতা :

বলের দারা বস্তুর উপর কাজ করার হারকে ক্ষমতা বলে। যদি t সময়ে w কাজ হয়ে থাকে তবে

ক্ষমতা,
$$P = \frac{W}{t}$$

কাজ করার সামর্থ্যকে শক্তি বলে।

যেমন: তাপ শক্তি, বিদ্যুৎ শক্তি ইত্যাদি।

শক্তির একক ও কাজের একক একই।

ক্ষমতার একক :

পদ্ধতি	পরম একক	অভিকর্ষীয় একক
C.G.S	আগ/সেকেভ	গ্রাম-সেমি./সেকেড
M.K.S	কেজি-মি./ সেকেন্ড	কেজি-মি./সেকেন্ড
S.I	জুল/সেকেন্ড বা ওয়াট	নিউটন-মি./সেকেভ

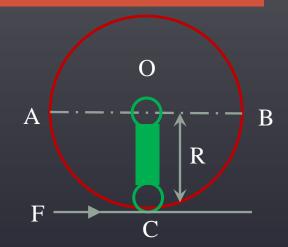
ঘূর্ণন দ্বারা কৃতকাজের ব্যাখ্যাঃ

মনে করি, ABC একটি চাকা । এর ব্যাসার্ধ বা হাতলের দৈর্ঘ্য R। একটি বল F হাতল OC এর উপর সমকোণে C বিন্দুতে প্রয়োগ করা হলে,হাতলটি চক্রাকারে ঘুরবে এবং এক পাক ঘুর্ণনে কাজের পরিমাণ হবে,

$$W=$$
 বল $imes$ সরণ $=F imes 2\pi R$ (i)
$$\Rightarrow W=2\pi \ imes FR$$
 কিন্তুআমরাজানি, টর্ক $au=$ বল $imes$ অক্ষ থেকে বলের প্রয়োগ বিন্দুর দূরত্ব $\Rightarrow au=F imes R$

: $W = 2\pi\tau$ ∴n সংখ্যক ঘূর্ণনে মোট কাজের পরিমাণ,

$$W=2\pi n au$$
 অর্থাৎ, $W=2\pi$ ×ঘূর্ণন $imes$ টর্ক



অশ্বশ্বমতা

যান্ত্রিক ক্ষমতার ব্যবহারিক একক অশ্বক্ষমতা । গাণিতিকভাবে,

```
এক অশ্বক্ষমতা = 550 ফুট-পাউন্ড/সেকেন্ড
= 33000 ফুট-পাউন্ড/মিনিট
= 75 কেজি-মিটার/সেকেন্ড
= 4500 কেজি-মিটার/মিনিট
= 746 ওয়াট ( জুল/সেকেন্ড)
```

অতএব, প্রতি সেকেন্ডে 75 কেজি-মিটার বা প্রতি মিনিটে 4500 কেজি-মিটার কাজ করার ক্ষমতাকে 1 H

সূচিত অশ্ব ক্ষমতা (I.H.P) : ইঞ্জিন সিলিভারের ভিতরে উৎপন্ন ইঞ্জিন এর প্রকৃত ক্ষমতাকে সূচিত অশ্ব ক্ষমতা বলে।

ব্রেক আশ্ব ক্ষমতা (B.H.P): ইঞ্জিন সিলিভারের উৎপন্ন ক্ষমতার অপচয় বাদে অবশিষ্ট অশ্বক্ষমতাকে ব্রেক অশ্ব ক্ষমতা বলে।

য্বর্শজনিত তাস্থ্র ক্ষমতা (F.H.P) : ইঞ্জিনে উৎপাদিত সকল শক্তি কাজে ব্যবহার করা যায়না । কিছু শক্তি ঘর্ষণজনিত কারণে লস হয় । ইঞ্জিনের এই লস হওয়া শক্তিকে ঘর্ষণজনিত অশ্ব ক্ষমতা বলে।

গাণিতিকভাবে, F.H.P = I.H.P - B.H.P

ইঞ্জিনের যান্ত্রিক দক্ষতা :

ব্রেক অশ্ব ক্ষমতা ও সূচিত অশ্ব ক্ষমতা এর অনুপাতকে ইঞ্জিনের যান্ত্রিক দক্ষতা বা কর্মদক্ষতা বলে।

যান্ত্রিক দক্ষতা,
$$\eta = \frac{B.H.P}{I.H.P}$$

দেখাও যে, IHP = $\frac{PLAN}{4500}$, যেখানেঅক্ষরগুলোপ্রচলিতঅর্থবহনকরে

মনে করি, সিলিভারের গড় কার্যকরী চাপ = P পিষ্টনের প্রস্থাছেদের ক্ষেত্রফল = A স্ট্রোক দৈর্ঘ্য = L প্রতি মিনিটে স্ট্রোক সংখ্যা = N পিষ্টনের উপর মোট বল = গড় কার্যকরী চাপ × ক্ষেত্রফল $= P \times A$ প্রতি স্ট্রোকে কাজের পরিমাণ = মোট বল × স্ট্রোক দৈর্ঘ্য $= P \times A \times L$ N স্টোকে কাজের পরিমাণ = মোট বল × স্টোক দৈর্ঘ্য = PLAN **PLAN**

যান্ত্রিক শক্তি: যান্ত্রিক শক্তি ২ প্রকার-

- স্থিতি শক্তি
- গতি শক্তি

স্থিতি শক্তি : অবস্থানের কারনে বস্তুর ভিতরে যে শক্তি সঞ্চিত থাকে তাকে স্থিতি শক্তি বলে। স্থিতি শক্তি , P.E = mgh

গতি শক্তি : গতিশীল অবস্থায় বস্তুতে যে শক্তি পাওয়া যায় তাকে গতি শক্তি বলে।

গতি শক্তির সূত্র নিরূপণ :

মনে করি, m ভর বিশিষ্ট একটি বস্তু v আদিবেগে চলছে।

গতির বিপরীতে F বল প্রয়োগ করায় f মন্দনের সৃষ্টি হয় এবং বস্তুটি S দূরত্ব অতিক্রম করার

পর থেমে যায়।

এখানে,শেষ বেগ = 0গতি শক্তি = বল \times সরন $K.E = F \times S$

মন্দনের ক্ষেত্রে আমরা জানি,

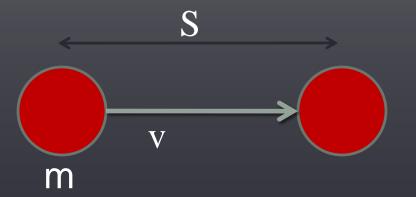
(শেষ বেগ)
$$^2 = (আদি বেগ)^2 - 2 \times মন্দন \times দূরত্ব$$

$$\Rightarrow v^2 = u^2 - 2fS$$

$$\Rightarrow 0^2 = v^2 - 2fS$$

$$\Rightarrow v^2 = 2fS$$

$$\Rightarrow S = \frac{v^2}{2f}$$
m



তাহলে, K.E = FS =
$$F \times \frac{v^2}{2f}$$
 আবার, $F = mf$ = $\frac{mfv^2}{2f}$ = $\frac{mv^2}{2}$ \therefore K.E = $\frac{1}{2}mv^2$

শক্তির নিত্যতার সূত্র :

শক্তিকে সৃষ্টি বা ধ্বংস করা যায় না। শুধু এক অবস্থা থেকে অন্য অবস্থায় রূপান্তরিত করা যায়।

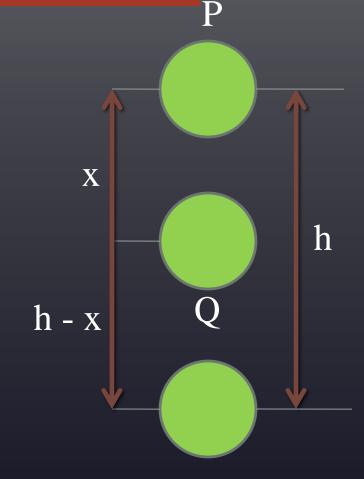
শক্তির নিত্যতার সূত্র এর প্রমান বা স্থিতি ও গতি শক্তির মধ্যে সম্পর্ক:

মনে করি, m ভর বিশিষ্ট একটি বস্তুকে ভূপৃষ্ঠ হতে h উচ্চতায় p বিন্দুতে উঠানো হল। এ অবস্থায় এর সমস্ত শক্তি স্থিতি শক্তি।

এই স্থিতি শক্তির পরিমান = mgh

এবং গতি শক্তি = 0

P বিন্দুতে মোট শক্তি = mgh + 0 = mgh



বস্তুটি P বিন্দু থেকে x নিচে Q বিন্দুতে আসল এবং এর বেগ = v

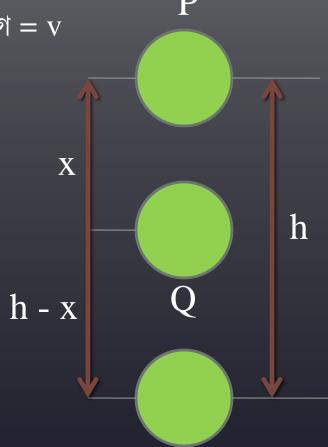
গতির সূত্র থেকে আমরা জানি,

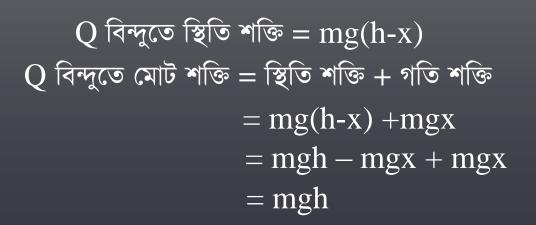
$$v^2 = u^2 + 2gx$$

$$\Rightarrow$$
 v² = 0² + 2gx

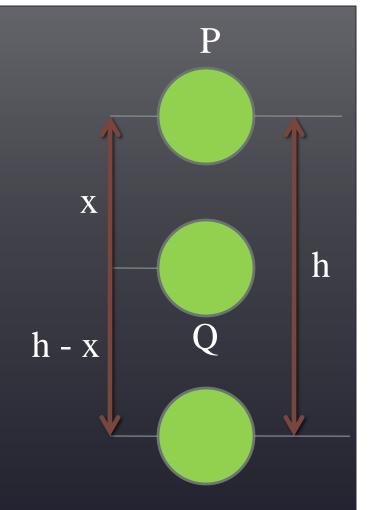
$$\Rightarrow$$
 v² = 2gx

$$Q$$
 বিন্দুতে গতি শক্তি = $\frac{mv^2}{2}$
= $\frac{2gmx}{2}$
= mgx





এ থেকে বোঝা যায় যে, পড়ন্ত বস্তুর পতনের পথে যে কোন অবস্থানে এর মোট শক্তি সমান।



কাজ,ক্ষমতা ও শক্তি অধ্যায়ের সূত্রঃ

$$(ii)$$
 কাজ, W = FS $\cos\theta$

$$(iii)$$
 ক্ষমতা, $P = \frac{W}{t}$

(iv)
$$P.E = mgh$$

(v) K.E =
$$\frac{1}{2}$$
 mv²

(vi) IHP =
$$\frac{PLAN}{4500}$$

$$(vii)$$
 যান্ত্ৰিক দক্ষতা, $\eta = \frac{B.H.P}{I.H.P}$

আলোচ্য বিষয়

WORK, POWER AND ENERGY

কাজ,ক্ষমতা ও শক্তি

অংকের সমাধান

কাজ,ক্ষমতা ও শক্তি অধ্যায়ের সূত্রঃ

$$(ii)$$
 কাজ, W = FS $\cos\theta$

$$(iii)$$
 ক্ষমতা, $P = \frac{W}{t}$

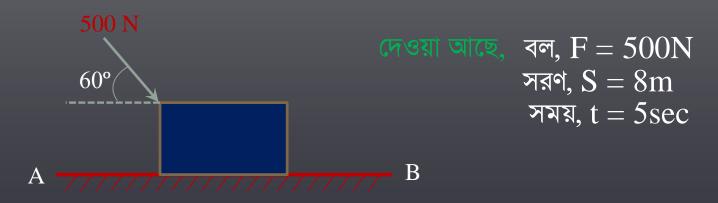
$$(iv) P.E = mgh$$

(v) K.E =
$$\frac{1}{2}$$
 mv²

(vi) IHP =
$$\frac{PLAN}{4500}$$
 = $\frac{PLAN}{75}$

$$(vii)$$
 যান্ত্ৰিক দক্ষতা, $\eta = \frac{B.H.P}{I.H.P}$

চিত্রে বর্ণিত বস্তুটির AB রেখা বরাবর 5 \sec -এ 8m সরণ হলে কাজের পরিমাণ ও ক্ষমতা নির্ণয় কর।



আমরা জানি, কাজ,
$$W = FS \cos\theta$$
 আবার, ক্ষমতা, $P = \frac{W}{t}$

$$= 500 \times 8 \times \cos 60^{\circ}$$

$$= 2000 \text{ N-m}$$

$$= 2000 \text{ Joule}$$

$$= 400 \text{ Watt.}$$

60 কেজি ওজনের বস্তু 10 মিটার উচ্চতা হতে পতনের ফলে রূপান্তরিত স্থিতিশক্তির পরিমাণ কত ক্যালরি হবে ?

এখানে, গুজন, W = 60 kg
উচ্চতা, H = 10 m
আমরা জানি,
স্থিতিশক্তি, P.E = mgh
= Wh
= 60 × 10
= 600 Kg-m
= 600 × 9.81 Joule [::1 Kg-m= 9.81 Joule]
=
$$\frac{5886}{4.2}$$
 ক্যালরি [::1 ক্যালরি = 4.2জুল]
= 1401.43 ক্যালরি Ans.

একটি পাম্প প্রতি ঘন্টায় ৫০,০০০ লিটার পানি ৩০ মিটার উপরে একটি ট্যাঙ্গে উত্তোলন করে। পাম্পের দক্ষতা ৮৫% হলে কত অশ্বক্ষমতার মোটর প্রয়োজন হবে ?

দেওয়া আছে, প্রতি ঘন্টায় পানির পরিমাণ = 50,000 লিটার = 50,000 কেজি

$$\therefore$$
 প্রতিমিনিটেপানিরপরিমাণ $W=\frac{50,000}{60}=833.33$ কেজি

$$\eta = 85\% = \frac{85}{100} = 0.85, H = 30 m$$

প্রতিমিনিটেকাজেরপরিমাণ= WH = 833.33 × 30= 25,000 Kg-m

BHP =
$$\frac{WH}{4500} = \frac{25,000}{4500} = 5.56 \text{ hp}$$

$$\eta = \frac{\text{B.H.P}}{\text{I.H.P}} \Rightarrow 0.85 = \frac{5.56}{\text{I.H.P}}$$

$$\Rightarrow$$
 I.H.P = $\frac{5.56}{0.85}$ = 6.54 hp

😀 পাস্পটিচালাতে6.54অশ্বক্ষমতারমোটরপ্রয়োজন

90% কর্মক্ষমতা বিশিষ্ট 50 অশ্বক্ষমতার একটি ইঞ্জিন 60 মিটার নিচু হতে একটি ট্যাঙ্কে পানি সরবরাহ করে। মেশিনটি চালু থাকলে প্রতিদিন কত লিটার পানি সরবরাহ করবে?

ধরি, প্রতি সেকেন্ডে P লিটার পানি সরবরাহ করবে

আমরা জানি,
$$\eta = \frac{\text{B.H.P}}{\text{I.H.P}} \Rightarrow \text{BHP} = 50 \times 0.90 = 45 \text{ hp}$$

Dials. B.H.P =
$$\frac{WH}{75} = \frac{P \times 60}{75}$$

 $\Rightarrow 45 = \frac{P \times 60}{75}$
 $\Rightarrow P = \frac{45 \times 75}{60} \Rightarrow P = 56.25 \text{ Kg/sec}$
 $\Rightarrow P = 56.25 \times 3600 \times 24 \text{ Kg/day}$

 \therefore P=4.86×10⁶Kg/day

$$\eta = 90\% = \frac{90}{100} = 0.90$$
H = 60 m
I.H.P = 50 hp

[:1 hour = 3600 sec & 1day = 24 hours] একটি ইঞ্জিন সিলিন্ডারের ব্যাস 25 সেঃমিঃ এবং স্ট্রোক দৈর্ঘ্য 50 সেঃমিঃ। ইঞ্জিনটি প্রতি মিনিটে 250 বার ঘোরে। কার্যকরী গড় চাপ 4.5 কেজি/বর্গসেঃমিঃ হলে ইঞ্জিনের সূচিত অশ্বক্ষমতা নির্ণয় কর।

দেওয়া আছে, সিলিভারের গড় কার্যকরী চাপ, $P=4.5~{
m Kg/cm^2}$ সিলিভারের ব্যাস, $D=25~{
m cm}$

পিষ্টনেরপ্রস্থাছেদেরক্ষেত্রফল, $A=\frac{\pi}{4}\times D^2=\frac{\pi}{4}\times (25)^2=490.87~cm^2$ স্টোক দৈর্ঘ্য, L=50~cm=0.5m প্রতি মিনিটে স্টোক সংখ্যা, N=250

আমরাজানি, I.H.P =
$$\frac{\text{PLAN}}{4500}$$

$$= \frac{4.5 \times 0.5 \times 490.87 \times 250}{4500}$$

$$= 61.36 \text{ hp. Ans.}$$

100 কেজি ভরবিশিষ্ট কোন বস্তুকে 20 মিটার উচু হতে ছাদ থেকে ফেলে দেওয়া হল। 10 মিটার উচ্চতায় বস্তুর বেগ কত? অভিকর্ষীয় ত্বরণ, g=9.80 মিটার/সেকেন্ড².

দেওয়া আছে , বস্থুর ভর ,
$$m=100~kg$$
 উচ্চতা, $x=10m$ অভিকর্ষীয় ত্বরণ , $g=9.80~m/sec^2$ ধরি, 10 মিটার উচ্চতায় বস্তুর বেগ $=v$ আমরা জানি, $v^2=u^2+2gh$ $\Rightarrow v^2=0+2\times 9.80\times 10$ $\Rightarrow v^2=196$ $\Rightarrow v=\sqrt{196}$ $\therefore v=14~m/sec$

একটি রাইফেলের গুলি একটি তক্তাকে ভেদ করতে পারে। যদি গুলির বেগ দ্বিগুণ করা হয়, তবে অনুরূপ কয়টি তক্তা ভেদ করতে পারবে ?

বেগ
$$= \mathbf{V}$$

একটিতক্তাকেভেদকরতেপ্রয়োজনীয়গতিশক্তি = $\frac{1}{2}$ mv²

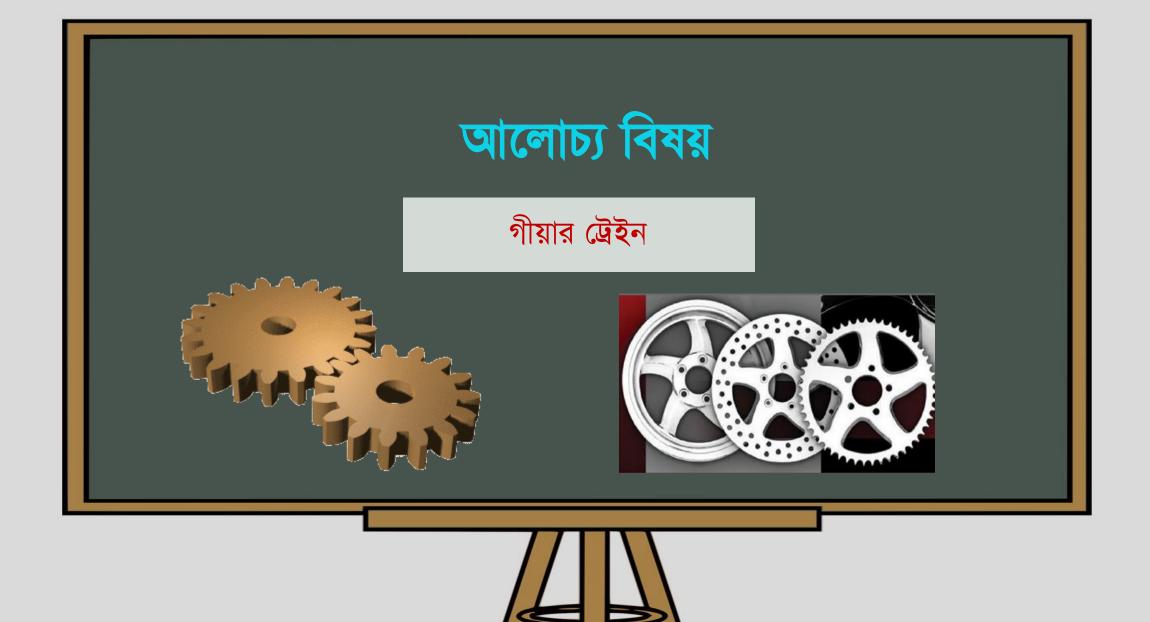
$$\therefore$$
 বেগদ্বিগুণকরায়গতিশক্তিরপরিমাণ = $\frac{1}{2}$ m $(2v)^2$

$$=\frac{1}{2}\text{m.}4\text{v}^2$$

$$=2mv^2$$

 $\frac{1}{2} \mathrm{m} \mathrm{v}^2$ গতিশক্তিপ্রয়োগকরলেতক্তাভেদকরে =1 টি

" " " =
$$\frac{2}{\text{mv}^2}$$
× 2mv^2 = 4 ែ Ans.



গিয়ার

যে পুলি বা চাকা এর রিমে নির্দিষ্ট ক্রমে খাঁজ থাকে ,তাকে দাঁত বলা হয়। আর এ দাঁতযুক্ত চাকাকে গিয়ার বলে । একে শ্যাফট এর সাথে দৃঢ়ভাবে আবদ্ধ করে ব্যবহার করা হয় । গিয়ারের সাহায্যে এক শ্যাফট থেকে অন্য শ্যাফটে গতিশক্তি স্থানান্তর করা হয় ।

গীয়ার ড্রাইভ এর সুবিধাসমূহঃ

একটি গীয়ার ড্রাইভ এর নিম্নলিখিত সুবিধাণ্ডলো পাওয়া যায় -

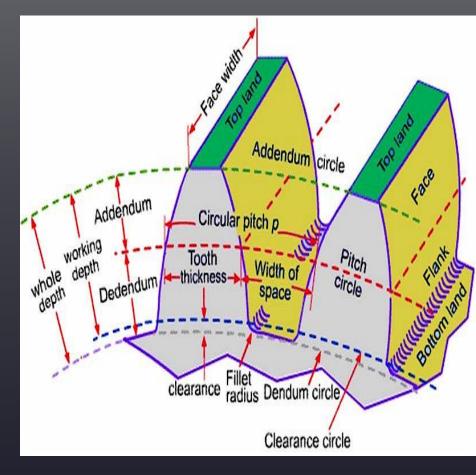
- ১) এটি যথাযথভাবে বেগের অনুপাত পরিবহন করে,
- ২) এটি উচ্চ দক্ষতা সম্পন্ন ,
- ৩) এটি দৃঢ় লে-আউট সম্পন্ন,
- ৪) অধিকশক্তি পরিবহন করতে পারে,
- ৫) এটি ব্যবহারে বিশ্বস্থ।

গীয়ার ড্রাইভ এর অসুবিধাসমূহঃ

- ১) গীয়ার তৈরী করতে বিশেষ ধরণের যন্ত্রপাতি এবং টুলস এর প্রয়োজন হয়।
- ২) গীয়ার তৈরীর মেশিন চলাকালীন সময় কম্পন বা নয়েজ এর কারনে দাঁতে যে কোন ধরণের ত্রুটি হতে পারে।
- ৩) একটি গীয়ারে যে কোন ধরণের ত্রটির জন্য সম্পূর্ণ ব্যবস্থা অকেজো হয়ে যায়।

গীয়ার সম্পকিত কারিগরি শব্দসমুহের বর্ণনা

পিচ সার্কেল: দুটি গীয়ারের দাঁত যে বিন্দুতে মিলিত হয়ে একটি গীয়ারের দাঁত অন্যটির দাঁতে চাপ প্রয়োগ করে এবং ওই মিলিত বিন্দুগুলিতে একটি কাল্পনিক রেখা দ্বারা সংযোগ করে যে বৃত্ত তৈরী করা হয় তাকে পিচ সার্কেল বলে। আর পিচ সার্কেলের ব্যাসকে পিচ সার্কেলের ব্যাসকে পিচ সার্কেলের ব্যাসকে পিচ সার্কেলের ব্যাসকে বুঝায়।

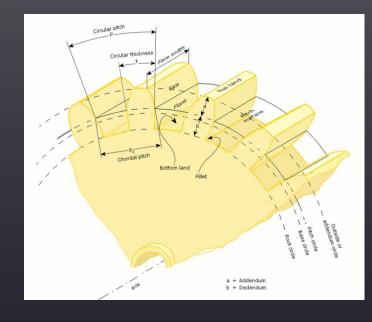


সার্কুলার পিচঃ

পিচ সার্কেলের পরিধিতে গীয়ারের একটি দাঁতের কেন্দ্র হতে পরবর্তী দাঁতের কেন্দ্র

পর্যন্ত দুরত্বকে সার্কুলার পিচ বা পিচ বলা হয়।

$$\Rightarrow P = \frac{\pi d}{T}$$

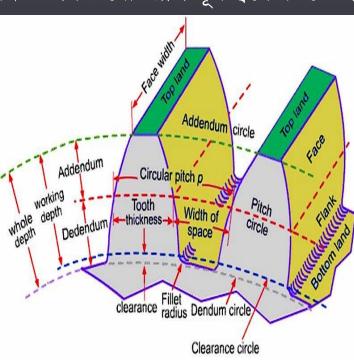


এডেভাম (Addendum): গীয়ার দাঁতের পিচ সার্কেল হতে উপর পর্যন্ত রেডিয়াল দূরুত্বকে এডেভাম বলে ।

এডেন্ডাম =
$$\frac{1}{$$
ভায়ামেট্রাল পিচ

ডিডেভাম (Dedendum): গীয়ার দাঁতের পিচ সার্কেল হতে নিচ পর্যন্ত রেডিয়াল দূরুত্বকে ডিডেভাম বলে ।

এর মান = এডেন্ডাম + ক্লিয়ারেন্স



গীয়ার মডিউল

পিচ ডায়ামিটারকে দাঁতের সংখ্যা দারা ভাগ করলে মডিউল পাওয়া যায়।

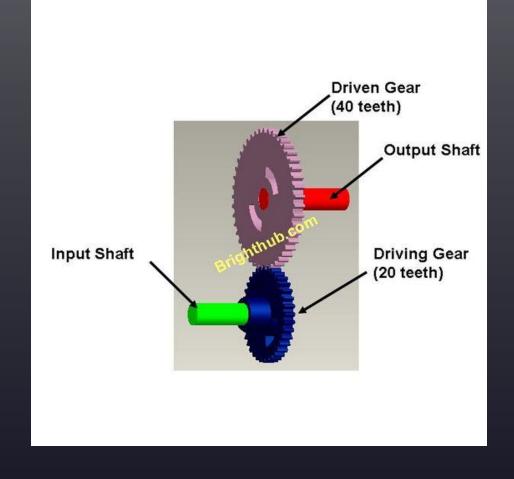
গীয়ারের প্রকারভেদঃ

পুরুত্বের দিক বিবেচনা করে গীয়ারকে ৩ টি শ্রেণীতে বিভক্ত করা যায়ঃ

- ১। বহিস্থ গীয়ারং (External Gearing)
- ২। অন্তস্থ গীয়ারিং (Internal Gearing)
- ত। র্যাক এবং পিনিয়ন গীয়ার (Rack and Pinion Gear)

১।বহিস্থ গীয়ারং(External Gearing):

দুটি চাকার গীয়ার যদি একে অপরের সাথে বাইরের দিকে মিলিত হলে তাকে বহিস্থ গীয়ারং বলে । বহিস্থ গীয়ার হুইলের বড়টির নাম স্পার হুইল এবং ছোটটিকে পিনিয়ন বলে।বহিস্থ গীয়ারং এর দুটি হুইলের গতি অসদৃশ ।

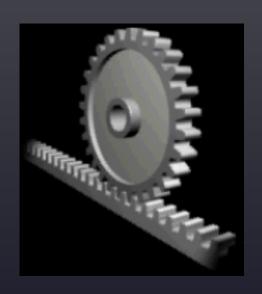


২। অন্তস্থ গীয়ারিং (Internal Gearing)

• দুইটি চাকা বা শ্যাফটের গীয়ার যদি একে অপরের সাথে ভিতরের দিকে পরস্পর মিলিত হয় তাকে (Internal Gearing) অন্তস্থ গীয়ারিং বলে । গীয়ার হুইলদ্বয়ের বড়টিকে অ্যানুলার (annular) হুইল এবং ছোটটিকে পিনিয়ন বলে। অন্তস্থ গীয়ারং এর দুটি হুইলের গতি সদৃশ ।

৩। র্যাক এবং পিনিয়ন গীয়ার

পরস্পরের সাথে সংযুক্ত দুইটি গীয়ারের মাঝে যদি একটি সোজা এবং অপরটি বৃত্তাকার হয় তবে তাকে র্যাক এবং পিনিয়ন বলে। সোজা গীয়ারকে র্যাক এবং বৃত্তাকার গীয়ারকে পিনিয়ন বলে।



সচরাচর ব্যবহৃত গিয়ারগুলো নিম্নে দেওয়া হলঃ

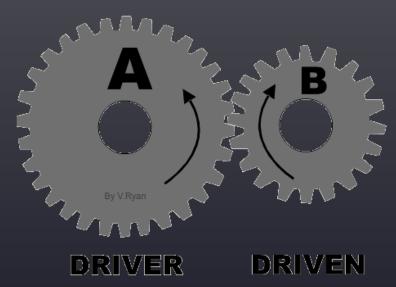
- * স্পার গীয়ার
- * বেভেল গীয়ার
- * হেলিক্যাল গীয়ার
- * স্পাইরাল গীয়ার
- * ওয়াম গীয়ার
- * হেরিংবন গীয়ার

সিম্পল গীয়ার ড্রাইভঃ

একই আকৃতির দাঁত বিশিষ্ট দুটি গীয়ার দুটি শ্যাফটে আবদ্ধ অবস্থায় শক্তি পরিবহনে বাবহৃত হলে তাকে সিম্পল গীয়ার ড্রাইভ বলে। গীয়ারের ব্যাস সমান বা অসমান হতে পারে। চাকা A ঘূর্ণন শ্যাফটের সাথে সংযুক্ত এবং একে চালক গীয়ার বলে।

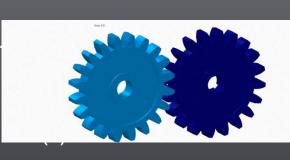
সিম্পল গিয়ারের বেগের অনুপাতের সমীকরণ

- চালক গিয়ারের বেগ এবং চালিত গিয়ারের বেগের অনুপাতকে সিম্পল গিয়ারের বেগের অনুপাত বলে।
- ধরি,
- N_1 = চালক গিয়ারের বেগ (rpm),
- T1=চালক গিয়ারের দাঁত সংখ্যা,
- d_1 =চালক গিয়ারের পিচ সার্কেল ব্যাস,
- N₂=চালিত গিয়ারের বেগ (rpm),
- T_2 =চালিত গিয়ারের দাঁত সংখ্যা ,
- d2=চালিত গিয়ারের পিচ সার্কেল ব্যাস,
- P = গিয়ারের পিচ



আমরা জানি, চালক গিয়ারের পিচ,
$$\; P \! = \! rac{\pi d_1}{T_1} \;$$

চালিত গিয়ারের পিচ,
$$P=rac{\pi d_2}{T_2}$$



যেহেতু উভয় গিয়ারের পিচ সমান , তাই সমীকরণ (i) ও (ii) হতে পাই,

$$\frac{\pi d_1}{T_1} = \frac{\pi d_2}{T_2}$$

$$\Rightarrow \frac{d_1}{d_2} = \frac{T_1}{T_2}$$

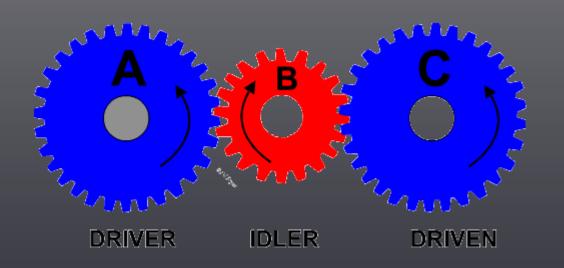
আবার,
$$\pi d_1 N_1 = \pi d_2 N_2$$
 $\Rightarrow \frac{d_1}{d_2} = \frac{N_2}{N_1}$

∴বেগেরঅনুপাত,
$$V.R = \frac{N_2}{N_1} = \frac{d_1}{d_2} = \frac{T_1}{T_2}$$

গীয়ার দ্রেইন

যখন দুই বা ততোধিক গীয়ার পরস্পরের সাথে এমনভাবে সংযুক্ত থাকে যে তারা একটি একক ব্যাবস্থা হিসেবে শক্তি সঞ্চালিত করে তখন গীয়ারের এরূপ সংযোগকে গীয়ার ট্রেইন বা ট্রেইন হুইল বলে । হুইল সজ্জা ব্যবস্থার উপর ভিত্তি করে গীয়ার ট্রেইন দু প্রকার।যথাঃ

- ১) সিম্পল গীয়ার ট্রেইন
- ২) কম্পাউন্ড গীয়ার ট্রেইন



চালক ও চালিত গীয়ারঃ শক্তি স্থানান্তরের জন্য শক্তি উৎসের শ্যাফটের সাথে সংযোজিত গীয়ারকে চালক গীয়ার বলে এবং যে গীয়ারকে অন্য একটি শ্যাফটের সাথে সংযুক্ত করে ঘুরানো হয় তাকে চালিত গীয়ার বলে।

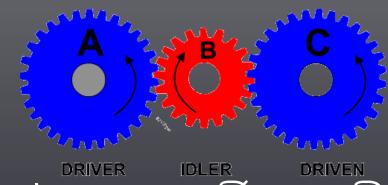
আইডল গীয়ার বা অলস গীয়ার : সিম্পল গীয়ার ট্রেইনে মধ্যবর্তী যে কোন সংখ্যক হুইল থাকলে উক্ত গীয়ার ট্রেইন বেগ অনুপাত মধ্যবর্তী হুইলগুলোর উপর মোটেও নির্ভরশীল নয়। সিম্পল গীয়ার ট্রেইন এর এই মধ্যবর্তী গীয়ার গুলোকে আইডল গীয়ার বা অলস গীয়ার বলে।

সিম্পল গিয়ার ট্রেইন

আবার, মনে করি, $N_1 =$ ড্রাইভারের $({
m rpm}),$

 N_2 = মধ্যবর্তী Idler এর (rpm),

 N_3 = ফলোয়ারের (rpm),



একইক্রমে T1,T2ও T3 হল গীয়ারগুলোর দাঁতসংখ্যা। ড্রাইভার মধ্যবর্তী Idler গীয়ারে

$$\frac{N_2}{N_1} = \frac{T_1}{T_2} \qquad (i)$$

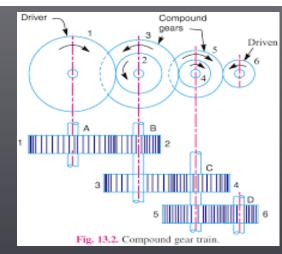
$$\frac{N_3}{N_2} = \frac{\overline{T2}}{T3} \tag{ii}$$

(i) কে (ii) দ্বারা গুণ করে পাই,

$$\frac{N_2}{N_1} \times \frac{N_3}{N_2} \, = \frac{T1}{T2} \times \frac{T2}{T3}$$

$$\therefore \frac{N_3}{N_1} = \frac{T_1}{T_3}$$

ভিন্ন ভিন্ন বেগ অনুপাত পাওয়ার জন্য একই শ্যাফটে দুই বা ততোধিক বিভিন্ন আকারের গীয়ারের সমাবেশকে যৌগিক বা কম্পাউন্ড গীয়ার ট্রেইন বলে ।



 $\mathbf{N}_1 = \mathbf{S}$ ম চালক গিয়ারের ঘূর্ণন সংখ্যা । $\mathbf{T}_1 = \mathbf{S}$ ম চালক গিয়ারের দাঁত সংখ্যা ।

অনুরূপভাবে, $N_2,N_3,N_4,\overline{N}_5,N_6=$ পরবর্তীগিয়ারগুলোরঘূর্ণনসংখ্যা । এবং, $T_2, T_3, T_4, T_5, T_6 = পরবর্তীগিয়ারগুলোরদাঁতসংখ্যা।$

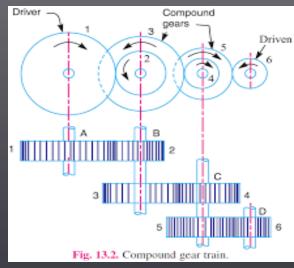
> যেহেতু (i) নং হুইল (ii) নং এর সাথে সংযুক্ত $\frac{N_2}{N_1} = \frac{T_1}{T_2} \dots$

> > অনুরূপভাবে, $\dfrac{N_4}{N_3} = \dfrac{T3}{T4}$

(i), (ii) এবং (iii) গুণ করে পাই,

$$\frac{N_2}{N_1} \times \frac{N_4}{N_3} \times \frac{N_6}{N_5} = \frac{T1}{T2} \times \frac{T3}{T4} \times \frac{T5}{T6}$$

$$\therefore \frac{N_6}{N_1} = \frac{T_1 \times T_3 \times T_5}{T_2 \times T_4 \times T_6}$$



$$[: N_2 = N_3 \& N_4 = N_5]$$

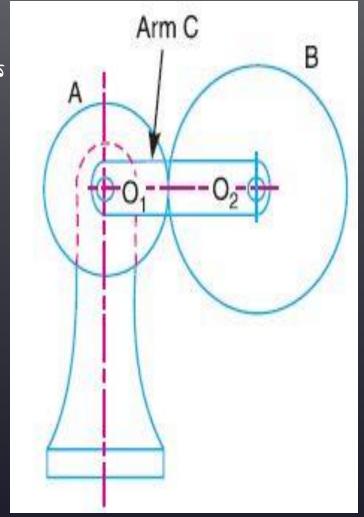
অর্থাৎ, শেষ চালিতের গতি চালক গুলোর দাঁতসংখ্যার গুণফল ১ম চালকের গতি চালিত গুলোর দাঁতসংখ্যার গুণফল

ইপিসাইক্লিক গীয়ার ট্রেইনঃ

গীয়ার ট্রেইনের যে ব্যবস্থায় নির্দিষ্ট কোন গীয়ার অপর কোন গীয়ারের অক্ষের চতুর্দিকে আবর্তিত হতে পারে, তাকে ইপিসাইক্লিক গীয়ার ট্রেইন বলে ।

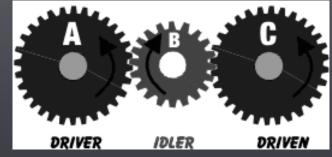
দুইটি পদ্ধতিতে ইপিসাইক্লিক গীয়ার <mark>দ্রেইনে</mark>র বেগের অনুপাত নিণ্য় করা হয় া

১। টেবিল বা তালিকা পদ্ধতি (Tabular method) ২।বীজগাণিতিক পদ্ধিতি (Algebraic method)



চিত্রের সরল গীয়ার ট্রেইন $600 ext{ r.p.m}$ এ পরিবর্তনশীল । গীয়ার A যদি চালক হয় , তবে ফলোয়ার গীয়ার C এর ঘূর্ণন গতি কত হবে ? প্রতিটির দাঁতসংখ্যা নিম্নরূপঃ

গীয়ার	A	В	C
দাঁতসংখ্যা	75	25	50



দেওয়া আছে, A গীয়ারের ঘূর্ণন সংখ্যা , $N_A=600~\mathrm{r.p.m}$

দাঁতসংখ্যা
$$T_A = 75$$
 $T_B = 25$ $T_C = 50$ $N_C = ?$

আমরা জানি,
$$\frac{N_C}{N_A} = \frac{T_A}{T_C}$$
 $\Rightarrow N_C = \frac{T_A}{T_C} \times N_A$ $\therefore N_C = \frac{75}{50} \times 600 = 900 \text{ r.p.m}$

একটি যৌগিকগীয়ারট্রেইনের**চালক গীয়ারগুলোর দাঁতসংখ্যা যথাক্রেমে** 100,60,40 চালিত গীয়ারগুলোর দাঁত প্রথমগীয়ারেরঘূর্ণনসংখ্যা25 r.p.mহলেশেষগীয়ারেরবেগনির্ণয়কর ।

দেওয়া আছে, চালকের দাঁতসংখ্যা, $T_1=100$ আমরা জানি, $\frac{\overline{N}_6}{\overline{N}_1}=\frac{\overline{T}_1\times\overline{T}_3\times\overline{T}_5}{\overline{T}_2\times\overline{T}_4\times\overline{T}_6}$ $T_3 = 60$ $T_5 = 40$ চালিতের দাঁতসংখ্যা,T2=50 $T_4 = 30$ $T_6 = 20$ প্রথমগীয়ারেরঘূর্ণনসংখ্যা, N₁ = 25 r.p.m

শেষ গীয়ারের বেগ, $N_6=?$

$$00$$
 সামরা জানি, $\frac{N_6}{N_1} = \frac{T_1 \times T_3 \times T_5}{T_2 \times T_4 \times T_6}$

$$\Rightarrow \frac{N_6}{25} = \frac{100 \times 60 \times 40}{50 \times 30 \times 20}$$

$$\Rightarrow N_6 = \frac{25 \times 100 \times 60 \times 40}{50 \times 30 \times 20}$$

$$\therefore N_6 = 200 \text{ r.p.m} \quad \text{Ans.}$$